Тема лекции: Физико-химические методы анализа. Физические методы анализа Физико - химические и физические методы анализа




1. ВВЕДЕНИЕ

2. КЛАССИФИКАЦИЯ МЕТОДОВ

3. АНАЛИТИЧЕСКИЙ СИГНАЛ

4.3. ХИМИЧЕСКИЕ МЕТОДЫ

4.8. ТЕРМИЧЕСКИЕ МЕТОДЫ

5. ЗАКЛЮЧЕНИЕ

6. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

Химический анализ служит средством контроля производства и качества продукции в ряде отраслей народного хозяйства. На результатах анализа в различной степени базируется разведка полезных ископаемых. Анализ – главное средство контроля за загрязненностью окружающей среды. Выяснение химического состава почв, удобрений, кормов и сельскохозяйственной продукции важно для нормально функционирования агропромышленного комплекса. Химический анализ незаменим в медицинской диагностике, биотехнологии. От уровня химического анализа, оснащенности лаборатории методами, приборами и реактивами зависит развитие многих наук.

Научная основа химического анализа – аналитическая химия, наука, которая в течение столетий была частью, а иногда и основной частью химии.

Аналитическая химия – это наука об определении химического состава веществ и отчасти их химического строения. Методы аналитической химии позволяют отвечать на вопросы о том, из чего состоит вещество, какие компоненты входят в его состав. Эти методы часто дают возможность узнать, в какой форме данный компонент присутствует в веществе, например установить степень окисления элемента. Иногда возможно оценить пространственное расположение компонентов.

При разработке методов часто приходится заимствовать идеи из смежных областей науки и приспосабливать их к своим целям. В задачу аналитической химии входит разработка теоретических основ методов, установление границ их применимости, оценка метрологических и других характеристик, создание методик анализа различных объектов.

Методы и средства анализа постоянно изменяются: привлекаются новые подходы, используются новые принципы, явления, часто из далеких областей знания.

Под методом анализа понимают достаточно универсальный и теоретически обоснованный способ определения состава безотносительно к определяемому компоненту и к анализируемому объекту. Когда говорят о методе анализа, имеют в виду принцип, положенный в основу, количественное выражение связи между составом и каким-либо измеряемым свойством; отобранные приемы осуществления, включая выявление и устранение помех; устройства для практической реализации и способы обработки результатов измерений. Методика анализа – это подробное описание анализа данного объекта с использованием выбранного метода.

Можно выделить три функции аналитической химии как области знания:

1. решение общих вопросов анализа,

2. разработка аналитических методов,

3. решение конкретных задач анализа.

Так же можно выделить качественный и количественный анализы. Первый решает вопрос о том, какие компоненты включает анализируемый объект, второй дает сведения о количественном содержании всех или отдельных компонентов.

2. КЛАССИФИКАЦИЯ МЕТОДОВ

Все существующие методы аналитической химии можно разделить на методы пробоотбора, разложения проб, разделения компонентов, обнаружения (идентификации) и определения. Существуют гибридные методы, сочетающие разделение и определение. Методы обнаружения и определения имеют много общего.

Наибольшее значение имеют методы определения. Их можно классифицировать по характеру измеряемого свойства или способу регистрации соответствующего сигнала. Методы определения делятся на химические , физические и биологические . Химические методы базируются на химических (в том числе электрохимических) реакциях. Сюда можно отнести и методы, называемые физико-химическими. Физические методы основаны на физических явлениях и процессах, биологические – на явлении жизни.

Основные требования к методам аналитической химии: правильность и хорошая воспроизводимости результатов, низкий предел обнаружения нужных компонентов, избирательность, экспрессность, простота анализа, возможность его автоматизации.

Выбирая метод анализа, необходимо четко знать цель анализа, задачи, которые нужно при этом решить, оценить достоинства и недостатки доступных методов анализа.

3. АНАЛИТИЧЕСКИЙ СИГНАЛ

После отбора и подготовки пробы наступает стадия химического анализа, на которой и проводят обнаружение компонента или определение его количества. С этой целью измеряют аналитический сигнал . В большинстве методов аналитическим сигналом является среднее из измерений физической величины на заключительной стадии анализа, функционально связанной с содержанием определяемого компонента.

В случае необходимости обнаружения какого-либо компонента обычно фиксируют появление аналитического сигнала – появление осадка, окраски, линии в спектре и т.д. Появление аналитического сигнала должно быть надежно зафиксировано. При определении количества компонента измеряется величина аналитического сигнала – масса осадка, сила тока, интенсивность линии спектра и т.д.

4. МЕТОДЫ АНАЛИТИЧЕСКОЙ ХИМИИ

4.1. МЕТОДЫ МАСКИРОВАНИЯ, РАЗДЕЛЕНИЯ И КОНЦЕНТРИРОВАНИЯ

Маскирование.

Маскирование – это торможение или полное подавление химической реакции в присутствии веществ, способных изменить ее направление или скорость. При этом не происходит образование новой фазы. Различают два вида маскирование – термодинамическое (равновесное) и кинетическое (неравновесное). При термодинамическом маскировании создаются условия, при которых условная константа реакции понижается до такой степени, что реакция идет незначительно. Концентрация маскируемого компонента становится недостаточной для того, что бы надежно зафиксировать аналитический сигнал. Кинетическое маскирование основано на увеличении разницы между скоростями реакции маскируемого и определяемого веществ с одним и тем же реагентом.

Разделение и концентрирование.

Необходимость разделения и концентрирования может быть обусловлена следующими факторами: проба содержит компоненты, мешающие определению; концентрация определяемого компонента ниже предела обнаружения метода; определяемые компоненты неравномерно распределены в пробе; отсутствуют стандартные образцы для градуировки приборов; проба высокотоксична, радиоактивна и дорога.

Разделение – это операция (процесс), в результате которой компоненты, составляющие исходную смесь, отделяются один от другого.

Концентрирование - это операция (процесс), в результате которой повышается отношение концентрации или количества микрокомпонентов к концентрации или количеству макрокомпонента.

Осаждение и соосаждение.

Осаждение, как правило, применяют для разделения неорганических веществ. Осаждение микрокомпонентов органическими реагентами, и особенно их соосаждение, обеспечивают высокий коэффициент концентрирования. Эти методы используют в комбинации с такими методами определения, которые рассчитаны на получение аналитического сигнала от твердых образцов.

Разделение путем осаждения основано на различной растворимости соединений, преимущественно в водных растворах.

Соосаждение – это распределение микрокомпонента между раствором и осадком.

Экстракция.

Экстракция – это физико-химический процесс распределения вещества между двумя фазами, чаще всего между двумя несмешивающимися жидкостями. Так же это процесс массопереноса с химическими реакциями.

Экстракционные методы пригодны для концентрирования, извлечения микрокомпонентов или макрокомпонентов, индивидуального и группового выделения компонентов при анализе разнообразных промышленных и природных объектов. Метод прост и быстр в выполнении, обеспечивает высокую эффективность разделения и концентрирования и совместим с разными методами определения. Экстракция позволяет изучать состояние веществ в растворе при различных условиях, определять физико-химические характеристики.

Сорбция.

Сорбцию хорошо используют для разделения и концентрирования веществ. Сорбционные методы обычно обеспечивают хорошую селективность разделения, высокие значения коэффициентов концентрирования.

Сорбция – процесс поглощения газов, паров и растворенных веществ твердыми или жидкими поглотителями на твердом носителе (сорбентами).

Электролитическое выделение и цементация.

Наиболее распространен метод электоровыделения, при котором отделяемое или концентрированное вещество выделяют на твердых электродах в элементарном состоянии или в виде какого-то соединения. Электролитическое выделение (электролиз) основано на осаждении вещества электрическим током при контролируемом потенциале. Наиболее распространен вариант катодного осаждения металлов. Материалом электродов может служить углерод, платина, серебро, медь вольфрам и т.д.

Электрофорез основан на различиях в скоростях движения частиц разного заряда, формы и размера в электрическом поле. Скорость движения зависит от заряда, напряженности поля и радиуса частиц. Различают два варианта электрофореза: фронтальный (простой) и зонный (на носителе). В первом случае небольшой объем раствора, содержащего разделяемые компоненты, помещают в трубку с раствором электролита. Во втором случае передвижение происходит в стабилизирующей среде, которая удерживает частицы на местах после отключения электрического поля.

Метод цементации заключается в восстановлении компонентов (обычно малых количеств) на металлах с достаточно отрицательными потенциалами или альмагамах электроотрицательных металлов. При цементации происходит одновременно два процесса: катодный (выделение компонента) и анодный (растворение цементирующего металла).

Методы испарения.

Методы дистилляции основаны на разной летучести веществ. Вещество переходит из жидкого состояния в газообразное, а затем конденсируется, образуя снова жидкую или иногда твердую фазу.

Простая отгонка (выпаривание) – одноступенчатый процесс разделения и концентрирования. При выпаривании удаляются вещества, которые находятся в форме готовых летучих соединений. Это могут быть макрокомпоненты и микрокомпоненты, отгонку последних применяют реже.

Возгонка (сублимация) - перевод вещества из твердого состояния в газообразное и последующее осаждение его в твердой форме (минуя жидкую фазу). К разделению возгонкой прибегают, как правило, если разделяемые компоненты трудно плавятся или трудно растворимы.

Управляемая кристаллизация.

При охлаждении раствора, расплава или газа происходит образование зародышей твердой фазы – кристаллизация, которая может быть неуправляемой (объемной) и управляемой. При неуправляемой кристаллизации кристаллы возникают самопроизвольно во всем объеме. При управляемой кристаллизации процесс задается внешними условиями (температура, направление движения фаз и т.п.).

Различают два вида управляемой кристаллизации: направленную кристаллизацию (в заданном направлении) и зонную плавку (перемещение зоны жидкости в твердом теле в определенном направлении).

При направленной кристаллизации возникает одна граница раздела между твердым телом и жидкостью – фронт кристаллизации. В зонной плавке две границы: фронт кристаллизации и фронт плавления.

4.2. ХРОМАТОГРАФИЧЕСКИЕ МЕТОДЫ

Хроматография – наиболее часто используемый аналитический метод. Новейшими хроматографическими методами можно определять газообразные, жидкие и твердые вещества с молекулярной массой от единиц до 10 6 . Это могут быть изотопы водорода, ионы металлов, синтетические полимеры, белки и др. С помощью хроматографии получена обширная информация о строении и свойствах органических соединений многих классов.

Хроматография – это физико-химический метод разделения веществ, основанный на распределении компонентов между двумя фазами – неподвижной и подвижной. Неподвижной фазой (стационарной) обычно служит твердое вещество (его часто называют сорбентом) или пленка жидкости, нанесенная на твердое вещество. Подвижная фаза представляет собой жидкость или газ, протекающий через неподвижную фазу.

Метод позволяет разделять многокомпонентную смесь, идентифицировать компоненты и определять ее количественный состав.

Хроматографические методы классифицируют по следующим признакам:

а) по агрегатному состоянию смеси, в котором производят ее разделение на компоненты – газовая, жидкостная и газожидкостная хроматография;

б) по механизму разделения – адсорбционная, распределительная, ионообменная, осадочная, окислительно-восстановительная, адсорбционно - комплексообразовательная хроматография;

в) по форме проведения хроматографического процесса – колоночная, капиллярная, плоскостная (бумажная, тонкослойная и мембранная).

4.3. ХИМИЧЕСКИЕ МЕТОДЫ

В основе химических методов обнаружения и определения лежат химические реакции трех типов: кислотно-основные, окислительно-восстановительные и комплексообразования. Иногда они сопровождаются изменением агрегатного состояния компонентов. Наибольшее значение среди химических методов имеют гравиметрический и титриметрический. Эти аналитические методы называются классическими. Критериями пригодности химической реакции как основы аналитического метода в большинстве случаев являются полнота протекания и большая скорость.

Гравиметрические методы.

Гравиметрический анализ заключается в выделении вещества в чистом виде и его взвешивании. Чаще всего такое выделение проводят осаждением. Реже определяемый компонент выделяют в виде летучего соединения (методы отгонки). В ряде случаев гравиметрия – лучший способ решения аналитической задачи. Это абсолютный (эталонный) метод.

Недостатком гравиметрический методов является длительность определения, особенно при серийных анализах большого числа проб, а так же неселективность – реагенты-осадители за небольшим исключением редко бывают специфичны. Поэтому часто необходимы предварительные разделения.

Аналитическим сигналов в гравиметрии является масса.

Титриметрические методы.

Титриметрическим методом количественного химического анализа называют метод, основанный на измерении количества реагента В, затраченного на реакцию с определяемым компонентом А. Практически удобнее всего прибавлять реагент в виде его раствора точно известной концентрации. В таком варианте титрованием называют процесс непрерывного добавления контролируемого количества раствора реагента точно известной концентрации (титрана) к раствору определяемого компонента.

В титриметрии используют три способа титрования: прямое, обратное и титрование заместителя.

Прямое титрование – это титрование раствора определяемого вещества А непосредственно раствором титрана В. Его применяют в том случае, если реакция между А и В протекает быстро.

Обратное титрование заключается в добавлении к определяемому веществу А избытка точно известного количества стандартного раствора В и после завершения реакции между ними, титровании оставшегося количества В раствором титрана В’. Этот способ применяют в тех случаях, когда реакция между А и В протекает недостаточно быстро, либо нет подходящего индикатора для фиксирования точки эквивалентности реакции.

Титрование по заместителю заключается в титровании титрантом В не определяемого количества вещества А, а эквивалентного ему количества заместителя А’, получающегося в результате предварительно проведенной реакции между определяемым веществом А и каким-либо реагентом. Такой способ титрования применяют обычно в тех случаях, когда невозможно провести прямое титрование.

Кинетические методы.

Кинетические методы основаны на использовании зависимости скорости химической реакции от концентрации реагирующих веществ, а в случае каталитических реакций и от концентрации катализатора. Аналитическим сигналом в кинетических методах является скорость процесса или пропорциональная ей величина.

Реакция, положенная в основу кинетического метода, называется индикаторной. Вещество, по изменению концентрации которого судят о скорости индикаторного процесса, - индикаторным.

Биохимические методы.

Среди современных методов химического анализа важное место занимают биохимические методы. К биохимическим методам относят методы, основанные на использовании процессов, происходящих с участием биологических компонентов (ферментов, антител и т.п.). Аналитическим сигналом при этом чаще всего являются либо начальная скорость процесса, либо конечная концентрация одного из продуктов реакции, определяемая любым инструментальным методом.

Ферментативные методы основаны на использовании реакций, катализируемых ферментами – биологическими катализаторами, отличающимися высокой активностью и избирательностью действия.

Иммунохимические методы анализа основаны на специфическом связывании определяемого соединения – антигена соответствующими антителами. Иммунохимическая реакция в растворе между антителами и антигенами – сложный процесс, протекающий в несколько стадий.

4.4. ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ

Электрохимические методы анализа и исследования основаны на изучении и использовании процессов, протекающих на поверхности электрода или в приэлектродном пространстве. Любой электрический параметр (потенциал, сила тока, сопротивление и др.), функционально связанный с концентрацией анализируемого раствора и поддающийся правильному измерению, может служить аналитическим сигналом.

Различают прямые и косвенные электрохимические методы. В прямых методах используют зависимость силы тока (потенциала и т.д.) от концентрации определяемого компонента. В косвенных методах силу тока (потенциал и т.д.) измеряют с целью нахождения конечной точки титрования определяемого компонента подходящим титрантом, т.е. используют зависимость измеряемого параметра от объема титранта.

Для любого рода электрохимических измерений необходима электрохимическая цепь или электрохимическая ячейка, составной частью которой является анализируемый раствор.

Существуют различные способы классификации электрохимических методов – от очень простых до очень сложных, включающих рассмотрение деталей электродных процессов.

4.5. СПЕКТРОСКОПИЧЕСКИЕ МЕТОДЫ

К спектроскопическим методам анализа относят физические методы, основанные на взаимодействии электромагнитного излучения с веществом. Это взаимодействие приводит к различным энергетическим переходам, которые регистрируются экспериментально в виде поглощения излучения, отражения и рассеяния электромагнитного излучения.

4.6. МАСС-СПЕКТРОМЕТРИЧЕСКИЕ МЕТОДЫ

Масс-спектрометрический метод анализа основан на ионизации атомов и молекул излучаемого вещества и последующем разделении образующихся ионов в пространстве или во времени.

Наиболее важное применение масс-спектрометрия получила для идентификации и установления структуры органических соединений. Молекулярный анализ сложных смесей органических соединений целесообразно проводить после их хроматографического разделения.

4.7. МЕТОДЫ АНАЛИЗА, ОСНОВАННЫЕ НА РАДИОАКТИВНОСТИ

Методы анализа, основанные на радиоактивности, возникли в эпоху развития ядерной физики, радиохимии, атомной техники и с успехом применяются и в настоящее время при проведении разнообразных анализов, в том числе в промышленности и геологической службе. Эти методы весьма многочисленны и разнообразны. Можно выделить четыре основные группы: радиоактивный анализ; методы изотопного разбавления и другие радиоиндикаторные методы; методы, основанные на поглощении и рассеянии излучений; чисто радиометрические методы. Наибольшее распространение получил радиоактивационный метод . Этот метод появился после открытия искусственной радиоактивности и основан на образовании радиоактивный изотопов определяемого элемента при облучении пробы ядерными или g-частицами и регистрации полученной при активации искусственной радиоактивности.

4.8. ТЕРМИЧЕСКИЕ МЕТОДЫ

Термические методы анализа основаны на взаимодействии вещества с тепловой энергией. Наибольшее применение в аналитической химии находят термические эффекты, которые являются причиной или следствием химических реакций. В меньшей степени применяются методы, основанные на выделении или поглощении теплоты в результате физических процессов. Это процессы, связанные с переходом вещества из одной модификации в другую, с изменением агрегатного состояния и другими изменениями межмолекулярного взаимодействия, например, происходящими при растворении или разбавлении. В таблице приведены наиболее распространенные методы термического анализа.

Термические методы успешно используются для анализа металлургических материалов, минералов, силикатов, а так же полимеров, для фазового анализа почв, определения содержания влаги в пробах.

4.9. БИОЛОГИЧЕСКИЕ МЕТОДЫ АНАЛИЗА

Биологические методы анализа основаны на том, что для жизнедеятельности – роста, размножения и вообще нормального функционирования живых существ необходима среда строго определенного химического состава. При изменении этого состава, например, при исключении из среды какого-либо компонента или введении дополнительного (определяемого) соединения организм через какое-то время, иногда практически сразу, подает соответствующий ответный сигнал. Установление связи характера или интенсивности ответного сигнала организма с количеством введенного в среду или исключенного из среды компонента служит для его обнаружения и определения.

Аналитическими индикаторами в биологических методах являются различные живые организмы, их органы и ткани, физиологические функции и т.д. В роли индикаторного организма могут выступать микроорганизмы, беспозвоночные, позвоночные, а так же растения.

5. ЗАКЛЮЧЕНИЕ

Значение аналитической химии определяется необходимостью общества в аналитических результатах, в установлении качественного и количественного состава веществ, уровнем развития общества, общественной потребностью в результатах анализа, так же и уровнем развития самой аналитической химии.

Цитата из учебника по аналитической химии Н.А.Меншуткина 1897 года выпуска: «Представив весь ход занятий по аналитической химии в виде задач, решение которых предоставлено занимающемуся, мы должны указать на то, что для подобного решения задач аналитическая химия даст строго определенный путь. Эта определенность (систематичность решения задач аналитической химии) имеет большое педагогическое значение.Занимающийся приучается при этом применять свойства соединений к решению вопросов, выводить условия реакций, комбинировать их. Весь этот ряд умственных процессов можно выразить так: аналитическая химия приучает химически думать. Достижение последнего представляется самым важным для практических занятий аналитической химией».

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. К.М.Ольшанова, С.К. Пискарева, К.М.Барашков «Аналитическая химия», Москва, «Химия», 1980 г.

2. «Аналитическая химия. Химические методы анализа», Москва, «Химия», 1993 г.

3. «Основы аналитической химии. Книга 1», Москва, «Высшая школа», 1999 г.

4. «Основы аналитической химии. Книга 2», Москва, «Высшая школа», 1999 г.

План лекции:

1. Общая характеристика физико-химических методов

2. Общие сведения о спектроскопических методах анализа.

3. Фотометрический метод анализа: фотоколориметрия, колориметрия, спектрофотометрия.

4. Общие сведения о нефелометрическом, люминесцентном, поляриметрическом методах анализа.

5. Рефрактометрический метод анализа.

6. Общие сведения о масс-спектральном, радиометрическом анализах.

7. Электрохимические методы анализа (потенциометрия, кондуктометрия, кулонометрия, амперометрия, полярография).

8. Хроматографический метод анализа.

Сущность физико-химических методов анализа. Их классификация.

Физико-химические методы анализа, как и химичес­кие методы, основаны на проведении той или иной хими­ческой реакции. В физических методах химические реак­ции отсутствуют или имеют второстепенное значение, хо­тя в спектральном анализе интенсивность линий всегда существенно зависит от химических реакций в угольном электроде или в газовом пламени. Поэтому иногда физи­ческие методы включают в группу физико-химических методов, так как достаточно строгого однозначного разли­чия между физическими и физико-химическими метода­ми нет, и выделение физических методов в отдельную группу не имеет принципиального значения.

Химические методы анализа были не в состоянии удов­летворить многообразные запросы практики, возросшие в результате научно-технического прогресса, развития полу­проводниковой промышленности, электроники и ЭВМ, ши­рокого применения чистых и сверхчистых веществ в техни­ке.

Применение физико-химических методов анализа на­шло свое отражение в технохимическом контроле пищевых производств, в научно-исследовательских и производственных лабораториях. Эти методы характеризуются высокой чувствительностью и быстрым выполнением анализа. Они основаны на использовании физико-химических свойств веществ.

При выполнении анализов физико-химическими методами точку эквивалентности (конец реакции) определяют не визуально, а при помощи приборов, которые фиксируют изменение физических свойств исследуемого вещества в точке эквивалентности. Для этой цели обычно применяют приборы с относительно сложными оптическими или электрическими схемами, поэтому эти методы получили название методов инструментального анализа.

Во многих случаях для выполнения анализа этими методами не требуется химическая реакция в отличие от химических методов анализа. Надо только измерить показатели каких-либо физических свойств анализируемого вещества: электропроводность, светопоглощение, светопреломление и др. Физико-химические методы позволяют вести в промышленности непрерывный контроль сырья, полуфабрикатов и готовых изделий.

Физико-химические методы анализа стали применять позднее, чем химические методы анализа, когда была установлена и изучена связь между физическими свойствами веществ и их составом.

Точность физико-химических методов сильно колеблет­ся в зависимости от метода. Наиболее высокой точностью (до 0,001%) обладает кулонометрия, основанная на изме­рении количества электричества, которое затрачивается на электрохимическое окисление или восстановление опреде­ляемых ионов или элементов. Большинство физико-хими­ческих методов имеют погрешность в пределах 2-5 %, что превышает погрешность химических методов анализа. Од­нако такое сравнение погрешностей не вполне корректно, так как оно относится к разным концентрационным облас­тям. При небольшом содержании определяемого компонен­та (около 10 -3 % и менее) классические химические методы анализа вообще непригодны; при больших концентрациях физико-химические методы успешно соперничают с хими­ческими. К числу существенных недостатков большинства физико-химических методов относится обязательное нали­чие эталонов и стандартных растворов.

Среди физико-химических методов наибольшее прак­тическое применение имеют:

1. спектральные и другие опти­ческие методы (рефрактометрия, поляриметрия);

2. электрохимические методы анализа;

3. хроматографические методы анализа.

Кроме этого выделяют еще 2 группы физико-химических методов:

1. радиометрические методы, основанные на измерении радиоактивного излучения данного элемента;

2. масс-спектрометрические методы анализа, основанные на определении масс отдельных ионизированных атомов, молекул и радикалов.

Наиболее обширной по числу методов и важной по практическому значению является группа спектральных и других оптических методов. Эти методы основаны на взаимодействии веществ с электромагнитным излучени­ем. Известно много различных видов электромагнитных излучений: рентгеновское излучение, ультрафио­летовое, видимое, инфракрасное, микроволновое и радио­частотное. В зависимости от типа взаимодействия элект­ромагнитного излучения с веществом оптические методы классифицируются следующим образом.

На измерении эффектов поляризации молекул вещест­ва основаны рефрактометрия, поляриметрия.

Анализируемые вещества могут поглощать электромаг­нитное излучение и на основе использования этого явления выделяют группу абсорбционных оптических методов.

Поглощение света атомами анализируемых веществ используется в атомно-абсорбционном анализе . Способ­ность поглощать свет молекулами и ионами в ультрафио­летовой, видимой и инфракрасной областях спектра поз­волила создать молекулярно-абсорбционный анализ (ко­лориметрию, фотоколориметрию, спектрофотометрию).

Поглощение и рассеяние света взвешенными частица­ми в растворе (суспензии) привело к появлению методов турбидиметрии и нефелометрии .

Методы, основанные на измерении интенсивности из­лучения, возникающего в результате выделения энергии возбужденными молекулами и атомами анализируемого вещества, называются эмиссионными методами . К молекулярно-эмиссионным методам относят люминесценцию (флуоресценцию), к атомно-эмиссионным - эмиссионный спектральный анализ и пламенную фотометрию.

Электрохимические методы анализа основаны на изме­рении электрической проводимости (кондуктометрия ); разности потенциалов (потенциометрия ); количества элект­ричества, прошедшего через раствор (кулонометрия ); за­висимости величины тока от приложенного потенциала (вольт-амперометрия).

В группу хроматографических методов анализа входят методы газовой и газожидкостной хроматографии, рас­пределительной, тонкослойной, адсорбционной, ионооб­менной и других видов хроматографии.

Спектроскопические методы анализа: общие сведения

Понятие о спектроскопическом методе анализа, его разновидности

Спектроскопические методы анализа - физические методы, основанные на взаимодействии электромагнит­ного излучения с веществом. Взаимодействие приводит к различным энергетическим переходам, которые регис­трируют инструментально в виде поглощения излучения, отражения и рассеяния электромагнитного излучения.

Классификация:

Эмиссионный спектральный анализ основан на изуче­нии спектров испускания (излучения) или эмиссионных спектров различных веществ. Разновидностью этого анализа является фотометрия пламени, основанная на измерении интенсивности излучения атомов, возбуж­даемого нагреванием вещества в пламени.

Абсорбционный спектральный анализ основан на изу­чении спектров поглощения анализируемых веществ. Если происходит поглощение излучения атомами, то абсорбция называется атомной, а если молекулами, то - молекулярной. Различают несколько видов аб­сорбционного спектрального анализа:

1. Спектрофотометрия - учитывает поглощение ана­лизируемым веществом света с определенной дли­ной волны, т.е. поглощение монохроматического из­лучения.

2. Фотометрия – основана на измерении по­глощения анализируемым веществом света не строго монохроматического излучения.

3. Колориметрия основана на измерении поглоще­ния света окрашенными растворами в видимой час­ти спектра.

4. Нефелометрия основана на измерении интенсив­ности света, рассеянного твердыми частицами, взве­шенными в растворе, т.е. света, рассеянного суспен­зией.

Люминесцентная спектроскопия использует свечение исследуемого объекта, возникающее под действием ультрафиолетовых лучей.

В зависимости от того, в какой части спектра про­исходит поглощение или излучение, различают спект­роскопию в ультрафиолетовой, видимой и инфракрас­ной областях спектра.

Спектроскопия - чувствительный метод определения более 60 элементов. Его применяют для анализа много­численных материалов, включая биологические среды, вещества растительного происхождения, цементы, стек­ла и природные воды.

Фотометрические методы анализа

Фотометрические методы анализа основаны на избира­тельном поглощении света анализируемым веществом или его соединением с подходящим реагентом. Интенсив­ность поглощения можно измерять любым способом, неза­висимо от характера окрашенного соединения. Точность метода зависит от способа измерения. Различают колори­метрический, фотоколориметрический и спектрофотометрический методы.

Фотоколориметрический метод анализа.

Фотоколориметрический метод анализа позволяет количест­венно определить интенсивность поглощения света анали­зируемым раствором с помощью фотоэлектроколориметров (иногда их называют просто фотоколориметрами). Для этого готовят серию стандартных растворов и вычер­чивают зависимость светопоглощения определяемого ве­щества от его концентрации. Эта зависимость называется градуировочным графиком. В фотоколориметрах свето­вые потоки, проходящие через раствор, имеют широкую область поглощения - 30-50 нм, поэтому свет здесь явля­ется полихроматическим. Это приводит к потере воспро­изводимости, точности и избирательности анализа. Достоинства фотоколориметра заключается в простоте конструкции и высокой чувствительности благодаря большой светосиле источника излучения – лампы накаливания.

Колориметрический метод анализа.

Колориметрический метод анализа основан на измерении поглощения света веществом. При этом сравнивают интенсивность окраски, т.е. оптическую плотность, исследуемого раствора с окраской (оптической плотностью) стандартного раствора, концентрация которого известна. Метод весьма чувствителен и применяется для определения микро- и полумикроколичеств.

Для проведения анализа колориметрическим методом требуется значительно меньше времени, чем химическим путем.

При визуальном анализе добиваются равенства интенсивности окрашивания анализируемого и окрашиваемого раствора. Этого можно достигнуть 2 путями:

1. уравнивают окраску, изменяя толщину слоя;

2. подбирают стандартные растворы разных концентраций (метод стандартных серий).

Однако визуально невозможно установить количествен­но, во сколько раз один раствор окрашен интенсивнее дру­гого. В этом случае можно установить только одинаковую окраску анализируемого раствора при сравнении его со стандартным.

Основной закон поглощения света.

Если световой поток, интенсивность которого I 0 , направить на раствор, находящийся в плоском стеклянном сосуде (кювете), то одна часть его интенсивностью I r , отражается от поверхности кюветы, другая часть интенсивностью I а поглощается раствором и третья часть интенсивностью I t проходит через раствор. Между этими величинами имеется зависимость:

I 0 = I r + I а + I t (1)

Т.к. интенсивность I r отраженной части светового потока при работе с одинаковыми кюветами постоянна и незначительна, то в расчетах ею можно пренебречь. Тогда равенство (1) принимает вид:

I 0 = I а + I t (2)

Это равенство характеризует оптические свойства раствора, т.е. его способность поглощать ил пропускать свет.

Интенсивность поглощенного света зависит от числа окрашенных частиц в растворе, которые поглощают свет больше, чем растворитель.

Световой поток, проходя через раствор, теряет часть интенсивности – тем большую, чем больше концентрация и толщина слоя раствора. Для окрашенных растворов существует зависимость, называемая законом Бугера – Ламберта – Бера (между степенью поглощения света, интенсивностью падающего света, концентрацией окрашенного вещества и толщиной слоя).

По этому закону, поглощение монохроматографического света, прошедшего через слой окрашенной жидкости, пропорционально концентрации и толщине слоя его:

I = I 0 ·10 - kCh ,

где I – интенсивность светового потока, прошедшего через раствор; I 0 – интенсивность падающего света; С – концентрация, моль/л ; h – толщина слоя, см ; k – мольный коэффициент поглощения.

Мольный коэффициент поглощения k – оптическая плотность раствора, содержащего 1 моль/л поглощающего вещества, при толщине слоя 1 см. Он зависит от химической природы и физического состояния поглощающего свет вещества и от длины волны монохроматического света.

Метод стандартных серий.

Метод стандартных серий основан на получении одинаковой интенсивности окраски исследуемого и стандартного растворов при одинаковой толщине слоя. Окраску исследуемого раствора сравнивают с окраской ряда стандартных растворов. При одинаковой интенсивности окраски концентрации исследуемого и стандартного растворов равны.

Для приготовления серии стандартных растворов берут 11 пробирок одинаковой формы, размера и из одинакового стекла. Наливают из бюретки стандартный раствор в постепенно возрастающем количестве, например: в 1 пробирку 0,5 мл , во 2ую 1 мл , в 3ю 1,5 мл , и т.д. – до 5 мл (в каждую следующую пробирку на 0,5 мл больше, чем в предыдущую). Во все пробирки наливают равные объемы раствора, который дает с определяемым ионом цветную реакцию. Растворы разбавляют так, чтобы уровни жидкости во всех пробирках были одинаковы. Пробирки закрывают пробками, тщательно перемешивают содержимое и размещают в штативе по возрастающим концентрациям. Таким образом получают цветную шкалу.

К исследуемому раствору в одинаковой пробирке прибавляют столько же реактива, разбавляют водой до того же объема, как и в других пробирках. Закрывают пробкой, тщательно перемешивают содержимое. Окраску исследуемого раствора сравнивают с окраской стандартных растворов на белом фоне. Растворы должны быть хорошо освещены рассеянным светом. Если интенсивность окраски исследуемого раствора совпадает с интенсивностью окраски одного из растворов цветной шкалы, то концентрации этого и исследуемого растворов равны. Если же интенсивность окраски исследуемого раствора промежуточная между интенсивностью двух соседних растворов шкалы, то его концентрация равна средней концентрации этих растворов.

Применение метода стандартных растворов целесообразно только при массовом определении какого-нибудь вещества. Заготовленная серия стандартных растворов служит относительно короткое время.

Метод уравнивания интенсивности окраски растворов.

Метод уравнивания интенсивности окраски исследуемого и стандартного растворов производится путем изменения высоты слоя одного из растворов. Для этого в 2 одинаковых сосуда помещают окрашенные растворы: исследуемый и стандартный. Изменяют высоту слоя раствора в одном из сосудов до тех пор, пока интенсивность окраски в обоих растворах не станет одинаковой. В этом случае определяют концентрацию исследуемого раствора С иссл. , сравнивая ее с концентрацией стандартного раствора:

С иссл. = С ст ·h ст / h иссл,

где h ст и h иссл – высота слоя соответственно стандартного и исследуемого раствора.

Приборы, служащие для определения концентраций исследуемых растворов методом уравнивания интенсивности окраски, называются колориметрами.

Различают визуальные и фотоэлектрические колориметры. При визуальных колориметрических определениях интенсивность окраски измеряют непосредственным наблюдением. Фотоэлектрические методы основаны на использовании фотоэлементов-фотоколориметров. В зависимости от интенсивности падающего пучка света в фотоэлементе возникает электрический ток. Сила тока, вызванная воздействием света, измеряется гальванометром. Отклонение стрелки показывает интенсивность окраски.

Спектрофотометрия.

Фотометрический метод основан на измерении по­глощения анализируемым веществом света не строго монохроматического излучения.

Если в фотометрическом методе анализа использовать монохроматическое излучение (излучение одной длины волны), то такой способ называют спектрофотометрией . Степень монохроматичности потока электромагнитного излучения определяют минимальным интервалом длин волн, который выделяется используемым монохроматором (светофильтром, дифракционной решеткой или призмой) из сплошного потока электромагнитного излучения.

К спектрофотометрии относят также область изме­рительной техники, объединяющую спектрометрию, фотометрию и метрологию и занимающуюся разработкой системы методов и приборов для количественных изме­рений спектральных коэффициентов поглощения, отраже­ния, излучения, спектральной яркости как характеристик сред, покрытий, поверхностей, излучателей.

Стадии спектрофотометрического исследования:

1) проведение химической реакции для получения систем, удобных для проведения спектрофотометричес­кого анализа;

2) измерения поглощения полученных растворов.

Сущность метода спектрофотометрии

Зависимость поглощения раствора вещества от дли­ны волны на графике изображается в виде спектра погло­щения вещества, на котором легко выделить максимум поглощения находящийся при длине волны света, максимально поглощаемой веществом. Измерение опти­ческой плотности растворов веществ на спектрофотомет­рах проводят при длине волны максимума поглощения. Это позволяет анализировать в одном растворе веще­ства, максимумы поглощения которых расположены при разных длинах волн.

В спектрофотометрии в ультрафиолетовой и видимой областях используют электронные спектры поглощения.

Они характеризуют наиболее высокие энергетические пере­ходы, к которым способен ограниченный круг соединений и функциональных групп. В неорганических соединениях электронные спектры связаны с высокой поляризацией ато­мов, входящих в молекулу вещества, и обычно появляются у комплексных соединений. У органических соединений возникновение электронных спектров вызывается перехо­дом электронов с основного на возбужденные уровни.

На положение и интенсивность полос поглощения силь­но влияет ионизация. При ионизации по кислотному типу в молекуле появляется дополнительная неподеленная пара электронов, что приводит к дополнительному батох-ромному сдвигу (сдвигу в длинноволновую область спект­ра) и повышению интенсивности полосы поглощения.

В спектре многих веществ имеется несколько полос поглощения.

Для спектрофотометрических измерений в ультрафи­олетовой и видимой областях применяется два типа при­боров - нерегистрирующие (результат наблюдают на шкале прибора визуально) и регистрирующие спектро­фотометры.

Люминесцентный метод анализа.

Люминесценция - способность к самостоятельному свечению, возникающему под различными воздействиями.

Классификация процессов, вызывающих люми­несценцию:

1)фотолюминесценция (возбуждение видимым или ультрафиолетовым светом);

2)хемилюминесценция (возбуждение за счет энергии химических реакций);

3)катодолюминесценция (возбуждение электронным ударом);

4)термолюминесценция (возбуждение нагреванием);

5)триболюминесценция (возбуждение механическим воздействием).

В химическом анализе имеют значение первые два вида люминесценции.

Классификация люминесценции по наличию пос­лесвечения . Оно может прекращаться сразу при исчез­новении возбуждения - флюоресценция или продол­жаться определенное время после прекращения возбуж­дающего воздействия - фосфоресценция . В основном используют явление флюоресценции, поэтому метод на­зван флюориметрией .

Применение флюориметрии : анализ следов метал­лов, органических (ароматических) соединений, витами­нов D, В 6 . Флюоресцентные индикаторы применяют при титровании в мутных или темно-окрашенных средах (титрование ведут в темноте, освещая титруемый ра­створ, куда добавлен индикатор, светом люминесцент­ной лампы).

Нефелометрический анализ.

Нефелометрия предложена Ф. Кобером в 1912 г. и основана на измерении интенсивности света, рассеянно­го суспензией частиц, с помощью фо­тоэлементов.

С помощью нефелометрии измеряют концентрацию веществ, нерастворимых в воде, но образующих стойкие суспензии.

Для проведения нефелометрических измерений при­меняются нефелометры , аналогичные по принципу коло­риметрам, с той лишь разницей, что при нефелометрии

При проведении фотонефелометрическогоанализа сначала по результатам определения серии стандартных растворов строят калибровочный график, затем проводят анализ исследуемого раствора и по графику определяют концентрацию анализируемого вещества. Для стабилиза­ции получаемых суспензий добавляют защитный колло­ид - раствор крахмала, желатина и др.

Поляриметрический анализ.

Электромагнитные колебания естественного света происходят во всех плоскостях, перпендикулярных к направлению луча. Кристаллическая решетка обладает способностью пропускать лучи только определенного направления. По выходе из кристалла колебания луча совершаются только в одной плоскости. Луч, колебания которого находятся в одной плоскости, называется поляризованным . Плоскость, в которой происходят колебания, называется плоскостью колебания поляризованного луча, а плоскость, перпендикулярная к ней, - плоскость поляризации .

Поляриметрический метод анализа основан на изучении поляризованного света.

Рефрактометрический метод анализа.

В основе рефрактометрического метода анализа лежит определение показателя преломления исследуемого вещества, т.к. индивидуальное вещество характеризуется определенным показателем преломления.

Технические продукты всегда содержат примеси, которые влияют на величину показателя преломления. Поэтому показатель преломления может в ряде случаев служить характеристикой чистоты продукта. Например, сорта очищенного скипидара различают по показателям преломления. Так, показатели преломления скипидара при 20° для желтого цвета, обозначенные через n 20 D (запись означает, что показатель преломления измерен при 20°С, длина волны падающего света равна 598 ммк), равны:

Первый сорт Второй сорт Третий сорт

1,469 – 1,472 1,472 – 1,476 1,476 – 1,480

Рефрактометрический метод анализа можно применять для двойных систем, например для определения концентрации вещества на водном или органическом растворах. В этом случае анализ основан на зависимости показателя преломления раствора от концентрации растворенного вещества.

Для некоторых растворов имеются таблицы зависимости показателей преломления от их концентрации. В других случаях анализируют методом калибровочной кривой: готовят серию растворов известных концентраций, измеряют их показатели преломления и строят график зависимости показателей преломления от концентрации, т.е. строят калибровочную кривую. По ней определяют концентрацию исследуемого раствора.

Показатель преломления.

При переходе луча света из одной среды в другую его направление меняется. Он преломляется. Показатель преломления равен отношению синуса угла падения к синусу угла преломления (эта величина постоянная и характерная для данной среды):

n = sin α / sin β,

где α и β – углы между направлением лучей и перпендикуляром к поверхности раздела обеих сред (рис. 1)


Показатель преломления – отношение скоростей света в воздухе и в исследуемой среде (если луч света падает из воздуха).

Показатель преломления зависит от:

1. длины волны падающего света (с увеличением длины волны показатель

преломления уменьшается);

2. температуры (с увеличением температуры показатель преломления уменьшается);

3. давления (для газов).

При обозначении показателя преломления указывают длины волны падающего света и температуру измерения. Например, запись n 20 D означает, что показатель преломления измерен при 20°С, длина волны падающего света равна 598 ммк. В технических справочниках показатели преломления приведены при n 20 D .

Определение показателя преломления жидкости.

Перед началом работы поверхность призм рефрактометра промывают дистиллированной водой и спиртом, проверяют правильность установления нулевой точки прибора и приступают к определению показателя преломления исследуемой жидкости. Для этого поверхность измерительной призмы осторожно протирают ваткой, смоченной исследуемой жидкостью, и наносят на эту поверхность несколько ее капель. Призмы закрывают и, вращая их, наводят границу светотени на крест нитей окуляра. Компенсатором устраняют спектр. При отсчете показателя преломления три десятичных знака берут по шкале рефрактометра, а четвертый – на глаз. Затем сдвигают границу светотени, снова совмещают ее с центром визирного креста и делают повторный отсчет. Т.о. производят 3 или 5 отсчетов, после чего промывают и вытирают рабочие поверхности призм. Исследуемое вещество снова наносят на поверхность измерительной призмы и проводят вторую серию измерений. Из полученных данных берут среднее арифметическое значение.

Радиометрический анализ.

Радиометрический анализ основан на измерении излучений радиоактивных элементов и применяется для количественного определения радиоактивных изотопов в исследуемом материале. При этом измеряют либо ес­тественную радиоактивность определяемого элемента, либо искусственную радиоактивность, получаемую с по­мощью радиоактивных изотопов.

Радиоактивные изотопы идентифицируют по перио­ду их полураспада или по виду и энергии испускаемого излучения. В практике количественного анализа чаще всего измеряют активность радиоактивных изотопов по их α-, β- и γ-излучению.

Применение радиометрического анализа:

Изучение механизма химических реакций.

Методом меченых атомов исследуют эффективность различных приемов внесения удобрений в почву, пути проникновения в организм микроэлементов, нанесен­ных на листья растения, и т.п. Особенно широко ис­пользуют в агрохимических исследованиях радиоактив­ные фосфор 32 Р и азот 13 N.

Анализ радиоактивных изотопов, используемых для лечения онкологических заболеваний и для определе­ния гормонов, ферментов.

Масс-спектральный анализ.

Основан на определении масс отдельных ионизированных атомов, молекул и радикалов в результате комбинированного действия электрического и магнитных полей. Регистрацию разделенных частиц проводят электрическим (масс-спектрометрия) или фотографическим (масс-спектрография) способами. Определение проводят на приборах – масс-спектрометрах или масс-спектрографах.

Электрохимические методы анализа.

Электрохимические методы анализа и исследования основаны на изучении и использовании процессов, про­текающих на поверхности электрода или в приэлектродном пространстве. Аналитический сигнал - электричес­кий параметр (потенциал, сила тока, сопротивление), ко­торый зависит от концентрации определяемого вещества.

Различают прямые и косвенныеэлектрохимические методы . В прямых методах используют зависимость силы тока от концентрации определяемого компонента. В косвенных - силу тока (потенциал) измеряют для на­хождения конечной точки титрования (точки эквивалент­ности) определяемого компонента титрантом.

К электрохимическим методам анализа относят:

1. потенциометрию;

2. кондуктометрию;

3. кулонометрию;

4. амперометрию;

5. полярографию.

Электроды, используемые в электрохимических методах.

1.Электрод сравнения и индикаторный электрод.

Электрод сравнения - это электрод с постоянным потенциалом, нечувствительный к ионам раствора. Элек­трод сравнения имеет устойчивый во времени воспроиз­водимый потенциал, не меняющийся при прохождении небольшого тока, и относительно его ведут отчет потен­циала индикаторного электрода. Используют хлорсеребряный и каломельный электроды. Хлорсеребряный элек­трод - серебряная проволока, покрытая слоем AgCI и помещенная в раствор KCI. Потенциал электрода опре­деляется концентрацией иона хлора в растворе:

Каломельный электрод состоит из металлической рту­ти, каломели и раствора KCI. Потенциал электрода зави­сит от концентрации хлорид-ионов и температуры.

Индикаторный электрод - это реагирующий на кон­центрацию определяемых ионов электрод. Индикаторный электрод изменяет свой потенциал с изменением концен­трации «потенциалопределяющих ионов». Индикаторные электроды делят на необратимые и обратимые . Скачки потенциала обратимых индикаторных электродов на меж­фазных границах зависят от активности участников элек­тродных реакций в соответствии с термодинамическими уравнениями; равновесие устанавливается достаточно быстро. Необратимые индикаторные электроды не удов­летворяют требованиям обратимых. В аналитической химии применяются обратимые электроды, для которых выполняется уравнение Нернста.

2. Металлические электроды: электронообменные и ионообменные.

Уэлектронообменного электрода на межфазной гра­нице протекает реакция с участием электронов. Электро­нообменные электроды делят на электроды первого рода и электроды второго рода . Электроды первого рода - металлическая пластина (серебро, ртуть, кадмий), погру­женная в раствор хорошо растворимой соли этого метал­ла. Электроды второго рода - металл, покрытый слоем малорастворимого соединения этого металла и погружен­ный в раствор хорошо растворимого соединения с тем же анионом (хлорсеребряный, каломельный электроды).

Ионообменные электроды - электроды, потенциал которых зависит от отношения концентраций окисленной и восстановленной форм одного или нескольких веществ в растворе. Такие электроды делаются из инертных ме­таллов, например из платины или золота.

3. Мембранные электроды представляют собой пори­стую пластинку, пропитанную жидкостью, не смешиваю­щейся с водой и способной к избирательной адсорбции определенных ионов (например, растворы хелатов Ni 2+ , Cd 2+ , Fe 2+ в органическом растворе). Работа мембранных электродов основана на возникновении разности потен­циалов на границе раздела фаз и установлении равновесия обмена между мембраной и раствором.

Потенциометрический метод анализа.

Потенциометрический метод анализа основан на измерении потенциала электрода, погруженного в раствор. При потенциометрических измерениях составляют галь­ванический элемент с индикаторным электродом и элек­тродом сравнения и измеряют электродвижущую силу (ЭДС).

Разновидности потенциометрии:

Прямая потенциометрия применяется для непосред­ственного определения концентрации по значению потен­циала индикаторного электрода при условии обратимос­ти электродного процесса.

Косвенная потенциометрия основана на том, что изменение концентрации иона сопровождается изменени­ем потенциала на электроде, погруженном в титруемый раствор.

В потенциометрическом титровании обнаруживают конечную точку по скачку потенциала, обусловленную заменой электрохимической реакции на другую в соответ­ствии со значениями Е° (стандартный электродный потенциал).

Значение по­тенциала зависит от концентрации соответствующих ионов в рас­творе. Например, потенциал серебряного электрода, погруженного в раствор соли серебра, изменяется с изменением концентрации Ag + -ионов в растворе. Поэтому, измерив потенциал электрода, погруженного в раствор данной соли неизвестной концентрации, можно определить содержание соответствующих ионов в растворе.

Электрод, по потенциалу которого судят о концентрации опре­деляемых ионов в растворе, называют индикаторным электродом.

Потенциал индикаторного электрода определяют, сравнивая его с потенциалом другого электрода, который принято называть электродом сравнения. В качестве электрода сравнения может быть применен только такой электрод, потенциал которого остает­ся неизменной при изменении концентрации определяемых ионов. В качестве электрода сравнения применяют стандартный (нор­мальный) водородный электрод.

На практике часто в качестве электрода сравнения с извест­ным значением электродного потенциала пользуются не водород­ным, а каломельным электродом (рис. 1). Потенциал каломель­ного электрода с насыщенным раствором КО при 20 °С равен 0,2490 В.

Кондуктометрический метод анализа.

Кондуктометрический ме­тод анализа основан на измерении электропроводности растворов, изменяющейся в результате химических реакций.

Электропроводность раствора зависит от природы электролита, его температуры и концентрации растворенного вещества. Элек­тропроводность разбавленных растворов обусловлена движением катионов и анионов, отличающихся различной подвижностью.

С повышением температуры электропроводность увеличивает­ся, так как увеличивается подвижность ионов. При данной темпе­ратуре электропроводность раствора электролита зависит от его концентрации: как правило, чем выше концентрация, тем больше электропроводность! Следовательно, электропроводность данного раствора служит показателем концентрации растворенного ве­щества и обусловливается подвижностью ионов.

В простейшем случае кондуктометрического количественного определения, когда в растворе содержится только один электро­лит, строят график зависимости электропроводности раствора ана­лизируемого вещества от его концентрации. Определив электро­проводность исследуемого раствора, по графику находят концент­рацию анализируемого вещества.

Так, электропроводность баритовой воды изменяется прямо пропорционально содержанию в растворе Ва(ОН) 2 . Эта зависи­мость графически выражается прямой линией. Чтобы определить содержание Ва(ОН) 2 в баритовой воде неизвестной концентрации, надо определить ее электропроводность и по калибровочному гра­фику найти концентрацию Ва(ОН)2, соответствующую этому зна­чению электропроводности. Если через раствор Ва(ОН) 2 , электро­проводность которого известна, пропустить измеренный объем га­за, содержащего диоксид углерода, то С0 2 реагирует с Ва(ОН) 2:

Ва(ОН) 2 + С0 2 ВаС0 3 + Н 2 0

В результате этой реакции содержание Ва(ОН) 2 в растворе уменьшится и электропроводность баритовой воды понизится. Из­мерив электропроводность баритовой воды после поглощения ею С0 2 , можно определить, насколько понизилась концентрация Ва(ОН) 2 в растворе. По разности концентраций Ва(ОН) 2 в бари­товой воде легко рассчитать количество поглощенной

АНАЛИТИЧЕСКАЯ ХИМИЯ И ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА Издательство ТГТУ Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" М.И. ЛЕБЕДЕВА АНАЛИТИЧЕСКАЯ ХИМИЯ И ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА Лекции к курсу Тамбов Издательство ТГТУ 2005 УДК 543(075) ББК Г4я73-4 Л33 Рецензенты: Доктор химических наук, профессор А.Б. Килимник Кандидат химических наук, доцент кафедры неорганической и физической химии ТГУ им. Г.Р. Державина А.И. Рягузов Лебедева, М.И. Л33 Аналитическая химия и физико-химические методы анализа: учеб. пособие / М.И. Лебедева. Там- бов: Изд-во Тамб. гос. техн. ун-та, 2005. 216 с. Рассмотрены основные вопросы курса «Аналитическая химия и физико-химические методы ана- лиза». После изложения теоретического материала в каждой главе даны содержательные блоки по про- верке знаний с помощью тестовых заданий и приведен рейтинг оценки знаний. В третьем разделе каж- дой главы приведены решения наиболее сложных задач и их оценка в баллах. Предназначены для студентов нехимических специальностей (200401, 200402, 240202, 240802, 240902) и составлены в соответствии со стандартами и учебными программами. УДК 543(075) ББК Г4я73-4 ISBN 5-8265-0372-6 © Лебедева М.И., 2005 © Тамбовский государственный технический университет (ТГТУ), 2005 Учебное издание ЛЕБЕДЕВА Мария Ивановна АНАЛИТИЧЕСКАЯ ХИМИЯ И ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА Лекции к курсу Редактор В.Н. Митрофанова Компьютерное макетирование Д.А. Лопуховой Подписано в печать 21.05.2005 Формат 60 × 84 / 16. Бумага офсетная. Печать офсетная Гарнитура Times New Roman. Объем: 12,55 усл. печ. л.; 12,50 уч.-изд. л. Тираж 200 экз. С. 571М Издательско-полиграфический центр Тамбовского государственного технического университета, 392000, Тамбов, Советская, 106, к. 14 ПРЕДИСЛОВИЕ Без анализа нет синтеза Ф. Энгельс Аналитическая химия – наука о способах идентификации химических соединений, о принципах и методах определения химического состава веществ и их структуры. Особую актуальность аналитическая химия приобрела в настоящее время, поскольку основным фактором неблагоприятного антропогенного воздействия на природу являются химические загрязнения. Определение их концентрации в различных природных объектах становится важнейшей задачей. Зна- ния основ аналитической химии одинаково необходимо современному студенту, инженеру, преподава- телю, предпринимателю. Ограниченное количество учебников и учебных пособий по курсу «Аналитическая химия и физико- химические методы анализа» для студентов химического профиля и полное их отсутствие для специ- альностей «Стандартизация и сертификация», «Пищевая биотехнология», «Инженерная защита окру- жающей среды», а также мой многолетний опыт преподавания этой дисциплины в ТГТУ привели к не- обходимости составления и издания предлагаемого курса лекций. Предлагаемое издание состоит из одиннадцати глав, в каждой из которых выделены наиболее важ- ные теоретические вопросы, отражающие последовательность изложения материала в лекционном кур- се. I – V главы посвящены химическим (классическим) методам анализа, в VIII – X рассмотрены основ- ные физико-химические методы анализа, а XI глава посвящена органическим аналитическим реагентам. Изучение каждого раздела рекомендуется завершать решением соответствующего содержательного блока, расположенного в конце главы. Блоки заданий сформулированы в трех специальных формах. Теоретические задания с выбором ответов (тип А). К каждому теоретическому вопроса такого типа предлагаются по четыре привлекательных варианта ответов, только один из которых является верным. За любое правильно решенное задание типа А студент получает один балл. Задачи с выбором ответов (тип B)1 оцениваются в два балла. Они несложные и решаются практиче- ски в одно или несколько действий. Верный ответ выбирается из четырех предлагаемых вариантов. Задания с развернутым ответом (тип С)2 предлагают студенту записать ответ в развернутой форме и в зависимости от полноты решения и его правильности могут оцениваться от одного до пяти баллов. Максимальное количество баллов дается за полностью решенное задание и указывается в последней строке рейтинговой таблицы. Суммарное количество баллов, набранные по той или иной теме, являются показателем знаний сту- дента, уровень которых можно оценить в предлагаемой рейтинговой системе. Набранное количество баллов Оценка 32 – 40 Отлично 25 – 31 Хорошо 16 – 24 Удовлетворительно Меньше 16 Неудовлетворительно Автор выражает благодарность студентам Авсеевой А., Бусиной М., Зобниной Е., Кацуба Л., Поля- ковой Н., Тишкиной Э. (гр. ПБ-21), Поповой С. (гр. З-31), принимавшим активное участие в оформлении работы. 1 В некоторых главах могут отсутствовать 2 В некоторых главах могут отсутствовать «Аналитическая химия чутко реагирует на за- просы производства и черпает для себя в этом силу и импульсы для дальнейшего рос- та.» Н.С. Курнаков 1 АНАЛИТИЧЕСКАЯ ХИМИЯ КАК НАУКА. ОСНОВНЫЕ ПОНЯТИЯ В решении крупнейших общечеловеческих проблем (проблема сырья, продовольствия, атомной энергетики, космонавтики, полупроводниковой и лазерной техники) ведущее место принадлежит ана- литической химии. Основой экологического мониторинга является совокупность различных химических наук, каждая из которых нуждается в результатах химического анализа, поскольку химическое загрязнение – основ- ной фактор неблагоприятного антропогенного воздействия на природу. Целью аналитической химии становится определение концентрации загрязняющих веществ в различных природных объектах. Ими являются природные и сточные воды различного состава, донные отложения, атмосферные осадки, воз- дух, почвы, биологические объекты и т.д. Широкое внедрение высокоэффективных мер контроля над состоянием окружающей природной среды, не ликвидируя болезнь в корне, очень важно для диагностики. Эффект в этом случае может быть получен намного быстрее и с наименьшими затратами. Система контроля дает возможность вовремя обнаружить вредные примеси и локализовать источ- ник загрязнения. Вот почему роль аналитической химии в охране окружающей среды приобретает все большее значение. Аналитическая химия – это наука о способах идентификации химических соединений, о принци- пах и методах определения химического состава веществ и их структуры. Она является научной осно- вой химического анализа. Химический анализ – это получение опытным путем данных о составе и свойствах объектов. Впервые это понятие научно обосновал Р. Бойль в книге «Химик-скептик» (1661 г.) и ввел термин «ана- лиз». Аналитическая химия базируется на знаниях, полученных при изучении курсов неорганической, ор- ганической, физической химии, физики и математики. Цель изучения аналитической химии – освоение современных методов анализа веществ и их при- менение для решения народно-хозяйственных задач. Тщательный и постоянный контроль производства и объектов окружающей среды основан на достижениях аналитической химии. В. Оствальд писал: «Аналитическая химия, или искусство распознавать вещества или их составные части, занимает среди приложений научной химии особое место, так как вопросы, на которые она дает возможность ответить, возникают всегда при попытке воспроизвести химические процессы для науч- ных или технических целей. Благодаря такому своему значению аналитическая химия с давних пор встречает постоянную заботу о себе…». 1.1 Краткая история развития аналитической химии История развития аналитической химии неотделима от истории развития химии и химической про- мышленности. Отдельные приемы и методы химического анализа были известны с глубокой древности (распознавание веществ по цвету, запаху, вкусу, твердости). В IX – X вв. на Руси пользовались так на- зываемым «пробирным анализом» (определение чистоты золота, серебра и руд). Так, сохранились запи- си Петра I о выполнении им «пробирного анализа» руд. При этом качественный анализ (определение качественного состава) всегда предшествовал количественному анализу (определение количественно- го соотношения компонентов). Основоположником качественного анализа считают английского ученого Роберта Бойля, кото- рый впервые описал методы обнаружения SO 2 − – и Cl − – ионов с помощью Ba 2 + – и Ag + – ионов, а также 4 применил органические красители в качестве индикаторов (лакмус). Однако аналитическая химия нача- ла формироваться в науку после открытия М.В. Ломоносовым закона сохранения веса веществ при хи- мических реакциях и применения весов в химической практике. Таким образом, М.В. Ломоносов – ос- новоположник количественного анализа. Современник Ломоносова академик Т.Е. Ловиц установил взаимосвязь между формой кристаллов и их химическим составом: «микрокристаллоскопический анализ». Первые классические работы по хи- мическому анализу принадлежат академику В.М. Севергину, опубликовавшему «Руководство по испы- танию минеральных вод». В 1844 г. профессор Казанского университета К.К. Клаус, анализируя «сы- рую платину», обнаружил новый элемент – рутений. Переломным этапом в развитии аналитической химии, в становлении ее как науки было открытие периодического закона Д.И. Менделеевым (1869 г.). Труды Д.И. Менделеева составили теоретический фундамент методов аналитической химии и определили основное направление ее развития. В 1871 г. вышло первое руководство по качественному и количественному анализу Н.А. Меншут- кина «Аналитическая химия». Аналитическая химия создавалась трудами ученых многих стран. Неоце- нимый вклад в развитие аналитической химии внесли русские ученые: А.П. Виноградов, Н.А. Тананаев, И.П. Алимарин, Ю.А. Золотов, А.П. Крешков, Л.А. Чугаев, М.С. Цвет, Е.А. Божевольнов, В.И. Кузне- цов, С.Б. Саввин и др. Развитие аналитической химии в первые годы Советской власти проходило в трех основных на- правлениях: – помощь предприятиям в выполнении анализов; – разработка новых методов анализа природных и промышленных объектов; – получение химических реактивов и препаратов. В годы ВОВ аналитическая химия выполняла оборонные задания. Длительное время в аналитической химии господствовали так называемые «классические» методы анализа. Анализ рассматривался как «искусство» и резко зависел от «рук» экспериментатора. Техниче- ский прогресс требовал более быстрых, простых методов анализа. В настоящее время большинство мас- совых химических анализов выполняется с помощью полуавтоматических и автоматических приборов. При этом цена оборудования окупается его высокой эффективностью. В настоящее время необходимо применять мощные, информативные и чувствительные методы ана- лиза, чтобы контролировать концентрации загрязнителей, меньшие ПДК. В самом деле, что означает нормативное «отсутствие компонента»? Может быть, его концентрация настолько мала, что традицион- ным способом ее не удается определить, но сделать это все равно нужно. Действительно, охрана окру- жающей среды – вызов аналитической химии. Принципиально важно, чтобы предел обнаружения загрязняющих веществ аналитическими методами был не ниже 0,5 ПДК. 1.2 ТЕХНИЧЕСКИЙ АНАЛИЗ На всех стадиях любого производства осуществляется технический контроль – т.е. проводятся ра- боты по контролю качества продукции в ходе технологического процесса с целью предотвращения брака и обеспечения выпуска продукции, соответствующей ТУ и ГОСТам. Технический анализ делится на общий – анализ веществ, встречающийся на всех предприятиях (Н2О, топливо, смазочные материалы) и специальный – анализ веществ, встречающихся только на данном предприятии (сырье, полупродукты, отходы производства, конечный продукт). С этой целью ежедневно тысячи химиков-аналитиков выполняют миллионы анализов, согласно со- ответствующим Международным ГОСТам. Методика анализа – подробное описание выполнения аналитических реакций с указанием условий их выполнения. Ее задачей является овладение навыками эксперимента и сущностью аналитических ре- акций. Методы аналитической химии основаны на различных принципах. 1.3 КЛАССИФИКАЦИЯ МЕТОДОВ АНАЛИЗА 1 По объектам анализа: неорганический и органический. 2 По цели: качественный и количественный. Количественный анализ позволяет установить количественные соотношения составных частей данного соединения или смеси веществ. В отличие от качественного анализа количественный анализ дает возможность определить содержание отдельных компонентов анализируемого вещества или общее содержание определяемого вещества в исследуемом объекте. Методы качественного и количественного анализа, позволяющие определить в анализируемом ве- ществе содержание отдельных элементов, называют элементным анализом; функциональных групп – функциональным анализом; индивидуальных химических соединений, характеризующихся опреде- ленной молекулярной массой, – молекулярным анализом. Совокупность разнообразных химических, физических и физико-химических методов разделения и определения отдельных структурных (фазовых) составляющих гетерогенных систем, различающихся по свойствам и физическому строению и ограниченных друг от друга поверхностями раздела, называют фазовым анализом. 3 По способу выполнения: химические, физические и физико-химические (инструментальные) методы. 4 По массе пробы: макро– (>> 0,10г), полумикро– (0,10 – 0,01г), микро– (0.01 – 10 −6 г), ультрамик- роанализ (< 10 −6 г). 1.4 АНАЛИТИЧЕСКИЕ РЕАКЦИИ 1.4.1 Способы выполнения аналитических реакций В основе аналитических методов – получение и измерение аналитического сигнала, т.е. любое проявление химических и физических свойств вещества в результате протекания химической реакции. Аналитические реакции можно проводить «сухим» и «мокрым» путем. Примеры реакций, проводимых «сухим» путем: реакции окрашивания пламени (Na + – желтый; Sr 2+ – красный; Ba 2+ – зеленый; K + – фиолетовый; Tl 3+ – зеленый, In + – синий и др.); при сплавлении Na 2 B 4 O 7 и Co 2+ , Na 2 B 4 O 7 и Ni 2+ , Na 2 B 4 O 7 и Cr 3+ образуются «перлы» буры различной окраски. Чаще всего аналитические реакции проводят в растворах. Анализируемый объект (индивидуальное вещество или смесь веществ) может находиться в любом агрегатном состоянии (твердом, жидком, газо- образном). Объект для анализа называется образцом, или пробой. Один и тот же элемент в образце мо- жет находиться в различных химических формах. Например: S 0 , S 2− , SO 2 − , SO 3 - и т.д. В зависимости от 4 2 цели и задачи анализа после переведения в раствор пробы проводят элементный анализ (определение общего содержания серы) или фазовый анализ (определение содержания серы в каждой фазе или в ее отдельных химических формах). Выполняя ту или иную аналитическую реакцию необходимо строго соблюдать определенные усло- вия ее протекания (температура, рН раствора, концентрация) с тем, чтобы она протекала быстро и имела достаточно низкий предел обнаружения. 1.4.2 Классификация аналитических реакций 1 Групповые реакции: один и тот же реактив реагирует с группой ионов, давая одинаковый сиг- нал. Так, для отделения группы ионов (Ag + , Pb 2+ , Hg 2+) используют реакцию их с Cl − – ионами, при этом 2 образуются белые осадки (AgCl, PbCl 2 , Hg 2 Cl 2). 2 Избирательные (селективные) реакции. Пример: йодокрахмальная реакция. Впервые ее описал в 1815 г. немецкий химик Ф. Штромейер. Для этих целей используют органические реагенты. Пример: диметилглиоксим + Ni 2+ → образование ало − красного осадка диметилглиоксимата никеля. Изменяя условия протекания аналитической реакции, можно неизбирательные реакции сделать из- бирательными. Пример: если реакции Ag + , Pb 2 + , Hg 2 + + Cl − проводить при нагревании, то PbCl 2 не осаждается, так как он 2 хорошо растворим в горячей воде. 3 Реакции комплексообразования используются для целей маскирования мешающих ионов. Пример: для обнаружения Со 2+ в присутствии Fe 3+ – ионов с помощью KSCN , реакцию проводят в присутствии F − – ионов. При этом Fe 3+ + 4F − → − , K н = 10 −16 , поэтому Fe 3+ – ионы закомплексованы и не мешают определению Co 2+ – ионов. 1.4.3 Реакции, используемые в аналитической химии 1 Гидролиз (по катиону, по аниону, по катиону и аниону) Al 3+ + HOH ↔ Al(OH) 2+ + H + ; CO 3 − + HOH ↔ HCO 3 + OH − ; 2 − Fe 3+ + (NH 4) 2 S + HOH → Fe(OH) 3 + ... 2 Реакции окисления–восстановления + 2MnSO 4 + 5K 2 S 2 O 8 + 8H 2 O Ag → 2HMnO 4 + 10KHSO 4 + 2H 2 SO 4  3 Реакции комплексообразования СuSO 4 + 4 NH 4 OH → SO 4 + 4H 2 O 4 Реакции осаждения Ba 2+ + SO 2− →↓ BaSO 4 4 1.4.4 Сигналы методов качественного анализа 1 Образование или растворение осадка Hg 2+ + 2I − →↓ HgI 2 ; красный HgI 2 + 2KI − → K 2 бесцветный 2 Появление, изменение, исчезновение окраски раствора (цветные реакции) Mn 2 + → − MnO 4 → MnO 2 − 4 бесцветный фиолетовый зеленый 3 Выделение газа SO 3 − + 2H + → SO 2 + H 2 O. 2 4 Реакции образования кристаллов строго определенной формы (микрокристаллоскопические ре- акции). 5 Реакции окрашивания пламени. 1.5 Аналитическая классификация катионов и анионов Для катионов существуют две классификации: кислотно-основная и сероводородная. Сероводо- родная классификация катионов представлена в табл. 1.1. 1.1 Сероводородная классификация катионов Аналитическая Аналитическая Катионы Групповой реагент группа форма І K + , Na + , NH + , Mg 2 + 4   (NH 4) 2 CO 3 + NH 4 OH + NH 4 Cl II Ba 2 + , Sr 2 + , Ca 2 + MeCO3 ↓ pH ~ 9 Al3 + , Cr 3 + (NH 4) 2 S + NH 4 OH + NH 4 Cl Me(OH)m ↓ III Zn 2 + , Mn 2 + , Ni 2 + , Co 2 + , Fe 2 + , Fe3 + pH ~ 9 MeS ↓ Cu 2 + , Cd 2 + , Bi 3 + , Sn 2 + , Sn 4 + H 2S → HCl, IV MeS ↓ Hg 2 + , As3 + , As5 + , Sb 3 + , Sb 5 + pH ~ 0,5 V Ag + , Pb 2 + , 2 + HCl MeCl m ↓ Все анионы делятся на две группы: 1 Групповой реагент – BaCl 2 ; при этом образуются растворимые соли бария: − − − Cl , Br , I , NO 3 , CH 3 COO − , SCN − , − , 4− 3− 2 − ClO − , ClO − , ClO 3 , ClO − . − , BrO3 4 2 Анионы образуют малорастворимые соли бария, которые растворимы в уксусной, соляной и азотной кислотах (за исключением BaSO 4): F − , CO 3 − , SO 2− , SO 3 − , S 2 O 3 − , SiO 3 − , CrO 2− , PO 3− . 2 4 2 2 2 4 4 1.5.1 Схема анализа по идентификации неизвестного вещества 1 Окраска сухого вещества: черная: FeS, PbS, Ag 2 S, HgS, NiS, CoS, CuО, MnO 2 и др; оранжевая: Cr2 O 7− и др; 2 желтая: CrO 2− , HgO, CdS ; 4 красная: Fe(SCN) 3 , Co 2+ ; синяя: Cu 2+ . 2 Окраска пламени. 3 Проверка на наличие кристаллизационной воды. 4 Действие кислот на сухую соль (газ). 5 Подбор растворителя (при комнатной температуре, при нагревании): H 2 O, CH 3 COOH, HCl, H 2 SO 4 , «царская водка», сплавление с Na 2CO3 и последующее выщелачивание. Следует помнить, что практи- чески все нитраты, все соли калия, натрия и аммония растворимы в воде. 6 Контроль pH раствора (только для растворимых в воде объектов). 7 Предварительные испытания (Fe 2+ , Fe 3+ , NH +). 4 8 Обнаружение группы катионов, анионов. 9 Обнаружение катиона. 10 Обнаружение аниона. 1.6 Методы разделения и концентрирования Разделение – это операция (процесс), в результате которого компоненты, составляющие исходную смесь, отделяются один от другого. Концентрирование – операция (процесс), в результате которого повышается отношение концен- трации или количества микрокомпонентов к концентрации или количеству макрокомпонентов. Необходимость разделения и концентрирования может быть обусловлена следующими факторами: – проба содержит компоненты, мешающие определению; – концентрация определяемого компонента ниже предела обнаружения метода; – определяемые компоненты неравномерно распределены в пробе; – отсутствуют стандартные образцы для градуировки приборов; – проба высокотоксична, радиоактивна или дорога. Большинство методов разделения основано на распределении вещества между двумя фазами: I – водной и II – органической. Например, для вещества А имеет место равновесие A I ↔ A II . Тогда отношение концентрации вещества А в органической фазе к концентрации вещества в водной фазе называется константой распределения K D KD = [A]II [A]I Если обе фазы – растворы, насыщенные относительно твердой фазы, и экстрагируемое вещество существует в единственной форме, то при равновесии константа распределения равна S II KD = , (1.1) SI где S I , S II – растворимости вещества в водной и органической фазах. Абсолютно полное извлечение, а, следовательно, и разделение теоретически неосуществимы. Эф- фективность извлечения вещества А из одной фазы в другую можно охарактеризовать двумя фактора- ми: полнотой извлечения Rn и степенью отделения примесей Rc . x y Rn = ; Rc = , (1.2) x0 y0 где x и x0 – содержание извлекаемого вещества и содержание его в исходном образце; y и y0 – конечное и исходное содержание примеси. Чем меньше Rc и чем больше Rn , тем совершеннее разделение.

ФИЗИЧЕСКИЕ МЕТОДЫ АНАЛИЗА

основаны на измерении эффекта, вызванного взаимод. с в-вом излучения - потока квантов или частиц. Излучение играет примерно ту же роль, что играет реактив в химических методах анализа. Измеряемый физ. эффект представляет собой сигнал. В результате неск. или мн. измерений величины сигнала и их стати-стич. обработки получают аналит. сигнал. Он связан с концентрацией или массой определяемых компонентов.

Исходя из характера используемого излучения, Ф. м. а. можно разделить на три группы: 1) методы, использующие первичное излучение, поглощаемое образцом; 2) применяющие первичное излучение, рассеиваемое образцом; 3) использующие вторичное излучение, испускаемое образцом. К примеру, масс-спектрометрия относится к третьей группе -первичным излучением здесь служит поток электронов, квантов света, первичных ионов или др. частиц, а вторичное излучение представляет собой разл. масс и зарядов.

С точки зрения практич. применения чаще используют др. классификацию Ф. м. а.: 1) спектроскопич. методы анализа -атомно-эмиссионная, атомно-абсорбционная, атомно-флуо-ресцентная спектрометрия и др. (см., напр., Атомно-абсорб-ционный анализ, Атомно-флуоресцентный анализ, Инфракрасная , Ультрафиолетовая спектроскопия), в т. ч. рентгено-флуоресцент-ный метод и рентгеноспектральный микроанализ, масс-спектрометрия, электронный парамагнитный резонанс и ядерный магнитный резонанс, электронная спектрометрия; 2) ядер-но-физ. и радиохим. методы - (см. Активационный анализ), ядерная гамма-резонансная, или мёссбауэровская спектроскопия, изотопного разбавления метод", 3) прочие методы, напр. рентгеновская дифрактометрия (см. Дифракционные методы), и др.

Достоинства физ. методов: простота пробоподготовки (в большинстве случаев) и качественного анализа проб, большая универсальность по сравнению с хим. и физ.-хим. методами (в т. ч. возможность анализа многокомпонентных смесей), широкий динамич. диапазон (т. е. возможность определения основных, примесных и следовых составляющих), часто низкие пределы обнаружения как по концентрации (до 10 -8 % без использования концентрирования), так и по массе (10 -10 -10 -20 г), что позволяет расходовать предельно малые кол-ва пробы, а иногда проводить . Многие Ф. м. а. позволяют выполнять как валовый, так и локальный и послойный анализ с пространств. разрешением вплоть до моноатомного уровня. Ф. м. а. удобны для автоматизации.

Использование достижений физики в аналит. химии приводит к созданию новых методов анализа. Так, в кон. 80-х гг. появились масс-спектрометрия с индуктивно связанной плазмой, ядерный микрозонд (метод, основанный на регистрации рентгеновского излучения, возбужденного при бомбардировке исследуемого образца пучком ускоренных ионов, обычно протонов). Расширяются области применения Ф. м. а. природных объектов и техн. материалов. Новый толчок их развитию даст переход от разработки теоретич. основ отдельных методов к созданию общей теории Ф. м. а. Цель таких исследований - выявление физ. факторов, обеспечивающих все связи в процессе анализа. Нахождение точной взаимосвязи аналит. сигнала с содержанием определяемого компонента открывает путь к созданию "абсолютных" методов анализа, не требующих образцов сравнения. Создание общей теории облегчит сопоставление Ф. м. а. между собой, правильный выбор метода для решения конкретных аналит. задач, оптимизацию условий анализа.

Лит.: Данцер К., Тан Э., Moльх Д., Аналитика. Систематический обзор, пер. с нем., M., 1981; Юинг Г., Инструментальные методы химического анализа, пер. с англ., M., 1989; Рамендик Г. И., Шишов В. В., "Ж. аналит. химии", 1990, т. 45, № 2, с. 237-48; Золотев Ю. А., Аналитическая химия: проблемы и достижения, M., 1992. Г. И. Рамендик.


Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Смотреть что такое "ФИЗИЧЕСКИЕ МЕТОДЫ АНАЛИЗА" в других словарях:

    - (a. physical methods of analysis; н. physikalische Analyseverfahren; ф. procedes physiques de l analyse; и. metodos fisicos de analisis) совокупность методов качеств. и количеств. анализа веществ, основанных на измерении физ.… … Геологическая энциклопедия

    физические методы анализа - fizikiniai analizės metodai statusas T sritis chemija apibrėžtis Metodai, pagrįsti medžiagų fizikinių savybių matavimu. atitikmenys: angl. physical analytical methods; physical methods of analysis rus. физические методы анализа … Chemijos terminų aiškinamasis žodynas

    - (РМА), методы качеств. и количеств. хим. анализа с использованием радионуклидов. Последние могут содержаться в исходном анализируемом в ве (напр., прир. радионуклиды таких элементов, как К, Th, U и др.), м. б. введены на определенном этапе… … Химическая энциклопедия

    - (a. chemical methods of analysis; н. chemische Analyseverfahren; ф. procedes chimiques de l analyse; и. metodos quimicos de analisis) совокупность методов качеств. и количеств. анализа веществ, осн. на применении хим. реакций. … … Геологическая энциклопедия

    Содержание 1 Методы электроаналитической химии 2 Введение 3 Теоретическая часть … Википедия

    I. Метод и мировоззрение. II. Проблемы историографии домарксистского литературоведения. III. Краткий обзор основных течений домарксистского литературоведения. 1. Филологическое изучение памятников слова. 2. Эстетический догматизм (Буало, Готтшед … Литературная энциклопедия

    Методы математические, применяемые в технологии сборного железобетона - – условно делятся на три группы: группа А – вероятностно статистические методы, включающие использование общей теории вероятностей, описательной статистики, выборочного метода и проверки статистических гипотез, дисперсионного и… … Энциклопедия терминов, определений и пояснений строительных материалов

    - (в аналитической химии) важнейшие аналитические операции, необходимые потому, что большинство аналитических методов недостаточно селективны (избирательны), т. е. обнаружению и количественному определению одного элемента (вещества) мешают многие… … Википедия

    ТРИЗ теория решения изобретательских задач, основанная Генрихом Сауловичем Альтшуллером и его коллегами в 1946 году, и впервые опубликованная в 1956 году это технология творчества, основанная на идее о том, что «изобретательское творчество… … Википедия

    Методы химического анализа физические - совокупность физических методов качественного и количественного анализа химических соединений и элементов. Основаны на измерении физических свойств исследуемых веществ (атомных, молекулярных, электрических, магнитных, оптических и т. п.). В… … Толковый словарь по почвоведению

Книги

  • Физические методы исследования их практическое применение в химическом анализе. Учебное пособие , Я. Н. Г. Ярышев, Ю. Н. Медведев, М. И. Токарев, А. В. Бурихина, Н. Н. Камкин. Учебное пособие предназначено для использования при изучении дисциплин: `Физические методы исследования`, `Стандартизация и сертификация пищевых продуктов`, `Химия окружающей среды`, `Гигиена…