Умножить матрицу на матрицу онлайн с решением. Умножение матриц онлайн. Умножение матрицы на вектор




состоящая из т строк и п столбцов, называется матрицей размера n × m . Числа а 11 , а 12 , ..., а mn называются ее элементами. Таблицу, обозначающую матрицу, записывают в круглых скобках и обозначают А = (а ij ).

Если число строк матрицы равно числу ее столбцов, то матрица называется квадратной, а число ее строк, равное числу столбцов, - порядком квадратной матрицы.

Множество всех элементов квадратной матрицы, кото­рые лежат на отрезке, соединяющем левый верхний угол с правым нижним, называется главной диагональю, а на отрезке, соединяющем правый верхний угол с левым нижним -побочной диагональю.

Квадратная матрица называется диагональной, если все ее элементы, не лежащие на главной диагонали, равны нулю. Квадратная матрица, у которой элементы, стоящие по главной диагонали равны единице, а остальные – нули, называется единичной и обозначается Е.

Две матрицы и называются равными, если число их строк и столбцов равны и если равны элементы, стоящие на соответственных местах этих мат­риц.

Матрица, все элементы которой равны нулю, назы­вается нулевой и обозначается через Н .

По определению, чтобы умножить матрицу А на число r, нужно каждый элемент матрицы А умножить на r.

Пример. Дана матрица А =
, найти матрицу 3А .

3 А = 3
=

Суммой матриц А и В называется матрица С, элементы которой равны суммам соответственных элементов матриц А и В . Складывать можно только матрицы с одинаковым числом строк и столбцов.

Пример. Даны матрицы А =
иВ =
. Найти матрицуС = А + В.

С =

Свойства сложения матриц:

    А+В=В+А

    (А+ В ) + С = А+ (В + С)

    А + Н = А

Произведение матрицы А на матрицу В определено только в том случае, когда число столбцов матрицы А равно числу строк матрицы В. В результате умножения получится матрица АВ, у которой столько же строк, сколько их в матрице А , и столько же столбцов, сколько их в матрице В.

Произведением двух матриц А (m × p ) и В (p × n ) называется матрица С (m × n ), элементы которой определены по правилу

С ij =

Замечание . Для того, чтобы перемножить две матрицы нужно элементы i -ой строки первой матрицы умножить на элементы j -ого столбца второй матрицы и сложить полученные произведения. Получим элемент новой матрицы с индексом ij .

Пример. Даны матрицы а и в. ;. Найти произведение матриц ав.

АВ=

=
=

Пример. Даны матрицы А и В . А =
иВ = .

Решение: А = (2X3), В = (3X2) => АВ = (2X2)

АВ=
=
=

Свойства умножения матриц:

    АВ ВА;

    (АВ)С=А(ВС);

    АЕ = ЕА = А

    (АВ )k = (AB)k= A(Bk)

    (A+B)C = AB +BC

    A(B+C) = AB + AC/

Транспонированной матрицей А T называется матрица, у которой строки записаны вместо столбцов, а столбцы – вместо строк.

Пример. Пусть дана матрица А=
, тогда

А T =

Определители.

Определителем второго порядка, соответствующий матрице А =
, называется число
=а 11 а 22 - а 12 а 21 .

Пример. Вычислить определителем второго порядка.

= 1 · (-3) – 2 · 4 = -11.

Определителем третьего порядка, соответствующий матрице

А =
, называется число
=а 11 а 22 а 33 12 а 23 а 31 + а 13 а 21 а 32 - а 13 а 22 а 31 - а 12 а 21 а 33 –а 11 а 23 а 32.

Чтобы запомнить какие произведения в правой части равенства следует брать со знаком «+», а какие со знаком «-», полезно правило названное правилом треугольника, изображенное на рис. 1.

« + » « - »

Рисунок 1.

Пример. Вычислить определитель

Второй способ вычисления определителей третьего порядка – это способ вычисления определителей третьего порядка, заключается в дописывании первых двух столбцов, в нахождении произведений по главной диагонали и параллелях к ней и по побочной диагонали и параллелях к ней.

= а 11 а 22 а 33 12 а 23 а 31 + а 13 а 21 а 32 - а 13 а 22 а 31 - а 12 а 21 а 33 –а 11 а 23 а 32.

Свойства определителей :

    Если в определителе поменять местами две строки (столбца), то его знак изменится на противоположный.

    Если в определителе поменять местами строки и столбцы, то его знак и величина не изменится.

    Если в определителе две строки пропорциональны (равны), то он равен нулю.

    Если в определителе какую либо строку (столбец) умножить на некоторое число и сложить с другой строкой (столбцом), то его значение не изменится.

    Если в определителе элементы какой либо строки (столбца) имеют общий множитель, то его можно вынести за знак определителя.

    Если определитель содержит нулевую строку или столбец, то он равен нулю.

Минором М ij элемента определителя а ij называется определитель, получаемый из исходного путем вычеркивания i - ой строки и j -ого столбца на которых расположен этот элемент.

Алгебраическим дополнением А ij элемента определителя а ij называется минор умноженный на (-1) i + j .

Третий способ вычисления определителей – с помощью теоремы разложения.

Теорема разложения: Определитель равен сумме произведений элементов какой-либо строки (столбца) на их алгебраические дополнения.

Пример. Вычислить определитель третьего порядка, разложив определитель по элементам первой строки.

= 5· (-1) 1+1 · + 3 · (-1) 1+2 ·
+ 2·(-1) 1+3 ·
= 68.

Этот же определитель можно вычислить с помощью свойства 4), а затем применить теорему разложения. В нашем примере образуем нули в первом столбце. Для этого к элементам первой строки прибавим элементы второй строки, умноженной на 5, а к элементам третьей строки прибавим элементы второй строки, умноженной на 7. И полученную матрицу разложим по элементам первого столбца.

=
= 0
- (-1)
+0
=
=13 · 34 – 17 · 22 = 68.

За неколько секунд сервер выдаст точное решение. Умножением матриц онлайн будет являться матрица , каждый элемент которой вычисляется как скалярное произведение строк первой матрицы на соответствующие столбцы второй матрицы по правилу умножения матриц . При умножении матриц онлайн , каждый элемент полученной матрицы будет результатом умножения строк одной матрицы на столбцы другой матрицы согласно правилу произведения матриц . Найти онлайн произведение двух матриц допустимых размерностей сводится к нахождению матрицы соответствующей им размерности. Операция умножения онлайн двух матриц размерностей NxK и KxM сводится к нахождению матрицы размерности MxN. Элементы этой матрицы составляют скалярное произведение умножаемых матриц , это результат умножения матриц онлайн . Задача по нахождению произведения матриц онлайн или операция умножения матриц онлайн заключается в умножении строк на столбцы матриц согласно правилу умножения матриц . www.сайт находит произведение матриц заданных размерностей в режиме онлайн . Умножение матриц онлайн заданной размерности - это нахождение соответствующей размерности матрицы, элементами которой будут скалярные произведения соответствующих строк и столбцов умножаемых матриц . Нахождение произведения матриц онлайн широко распространено в теории матриц , а так же линейной алгебры. Произведение матриц онлайн используется для определения результирующей матрицы от умножения заданных матриц . Для того, чтобы вычислить произведение матриц или определить умножение матриц онлайн , необходимо затратить не мало времени, в то время как наш сервер в считанные секунды найдет произведение матриц онлайн от умножения двух заданных матриц онлайн . При этом ответ по нахождению произведения матриц будет правильным и с достаточной точностью, даже если числа при умножении матриц онлайн будут иррациональными. На сайте www.сайт допускаются символьные записи в элементах матриц , то есть произведение матриц онлайн может быть представлено в общем символьном виде при умножении матриц онлайн . Полезно проверить ответ, полученный при решении задачи на умножение матриц онлайн , используя сайт www.сайт . При совершении операции умножения матриц онлайн необходимо быть внимательным и предельно сосредоточенным при решении задачи. В свою очередь наш сайт поможет Вам проверить своё решение на тему умножение матриц онлайн . Если у Вас нет времени на долгие проверки решенных задач, то www.сайт безусловно будет являться удобным инструментом для проверки умножения матриц онлайн .

Определение. Произведением двух матриц А и В называется матрица С , элемент которой, находящийся на пересечении i -й строки и j -го столбца, равен сумме произведений элементов i -й строки матрицы А на соответствующие (по порядку) элементы j -го столбца матрицы В .

Из этого определения следует формула элемента матрицы C :

Произведение матрицы А на матрицу В обозначается АВ .

Пример 1. Найти произведение двух матриц А и B , если

,

.

Решение. Удобно нахождение произведения двух матриц А и В записывать так, как на рис.2:

На схеме серые стрелки показывают, элементы какой строки матрицы А на элементы какого столбца матрицы В нужно перемножить для получения элементов матрицы С , а линиями цвета элемента матрицы C соединены соответствующие элементы матриц A и B , произведения которых складываются для получения элемента матрицы C .

В результате получаем элементы произведения матриц:



Теперь у нас есть всё, чтобы записать произведение двух матриц:

.

Произведение двух матриц АВ имеет смысл только в том случае, когда число столбцов матрицы А совпадает с числом строк матрицы В .

Эту важную особенность будет легче запомнить, если почаще пользоваться следующими памятками:

Имеет место ещё одна важная особенность произведения матриц относительно числа строк и столбцов:

В произведении матриц АВ число строк равно числу строк матрицы А , а число столбцов равно числу столбцов матрицы В .

Пример 2. Найти число строк и столбцов матрицы C , которая является произведением двух матриц A и B следующих размерностей:

а) 2 Х 10 и 10 Х 5;

б) 10 Х 2 и 2 Х 5;

Пример 3. Найти произведение матриц A и B , если:

.

A B - 2. Следовательно, размерность матрицы C = AB - 2 X 2.

Вычисляем элементы матрицы C = AB .

Найденное произведение матриц: .

Проверить решение этой и других подобных задач можно на калькуляторе произведения матриц онлайн .

Пример 5. Найти произведение матриц A и B , если:

.

Решение. Число строк в матрице A - 2, число столбцов в матрице B C = AB - 2 X 1.

Вычисляем элементы матрицы C = AB .

Произведение матриц запишется в виде матрицы-столбца: .

Проверить решение этой и других подобных задач можно на калькуляторе произведения матриц онлайн .

Пример 6. Найти произведение матриц A и B , если:

.

Решение. Число строк в матрице A - 3, число столбцов в матрице B - 3. Следовательно, размерность матрицы C = AB - 3 X 3.

Вычисляем элементы матрицы C = AB .

Найденное произведение матриц: .

Проверить решение этой и других подобных задач можно на калькуляторе произведения матриц онлайн .

Пример 7. Найти произведение матриц A и B , если:

.

Решение. Число строк в матрице A - 1, число столбцов в матрице B - 1. Следовательно, размерность матрицы C = AB - 1 X 1.

Вычисляем элемент матрицы C = AB .

Произведение матриц является матрицей из одного элемента: .

Проверить решение этой и других подобных задач можно на калькуляторе произведения матриц онлайн .

Программная реализация произведения двух матриц на С++ разобрана в соответствующей статье в блоке "Компьютеры и программирование".

Возведение матрицы в степень

Возведение матрицы в степень определяется как умножение матрицы на ту же самую матрицу. Так как произведение матриц существует только тогда, когда число столбцов первой матрицы совпадает с числом строк второй матрицы, то возводить в степень можно только квадратные матрицы. n -ая степень матрицы путём умножения матрицы на саму себя n раз:

Пример 8. Дана матрица . Найти A ² и A ³ .

Найти произведение матриц самостоятельно, а затем посмотреть решение

Пример 9. Дана матрица

Найти произведение данной матрицы и транспонированной матрицы , произведение транспонированной матрицы и данной матрицы.

Свойства произведения двух матриц

Свойство 1. Произведение любой матрицы А на единичную матрицу Е соответствующего порядка как справа, так и слева, совпадает с матрицей А, т.е. АЕ = ЕА = А.

Иными словами, роль единичной матрицы при умножении матриц такая же, как и единицы при умножении чисел.

Пример 10. Убедиться в справедливости свойства 1, найдя произведения матрицы

на единичную матрицу справа и слева.

Решение. Так как матрица А содержит три столбца, то требуется найти произведение АЕ , где

-
единичная матрица третьего порядка. Найдём элементы произведения С = АЕ :



Получается, что АЕ = А .

Теперь найдём произведение ЕА , где Е – единичная матрица второго порядка, так как матрица А содержит две строки. Найдём элементы произведения С = ЕА :

Сложение матриц:

Вычитание и сложение матриц сводится к соответствующим операциям над их элементами. Операция сложения матриц вводится только для матриц одинакового размера, т. е. для матриц , у которых число строк и столбцов соответственно равно. Суммой матриц А и В, называется матрица С, элементы которой равны сумме соответствующих элементов. С = А + В c ij = a ij + b ij Аналогично определяется разность матриц .

Умножение матрицы на число:

Операция умножения (деления) матрицы любого размера на произвольное число сводится к умножению (делению) каждого элемента матрицы на это число. Произведением матрицы А на число k называется матрица В, такая что

b ij = k × a ij . В = k × A b ij = k × a ij . Матрица - А = (-1) × А называется противоположной матрице А.

Свойства сложения матриц и умножения матрицы на число:

Операции сложения матриц и умножения матрицы на число обладают следующими свойствами: 1. А + В = В + А; 2. А + (В + С) = (А + В) + С; 3. А + 0 = А; 4. А - А = 0; 5. 1 × А = А; 6. α × (А + В) = αА + αВ; 7. (α + β) × А = αА + βА; 8. α × (βА) = (αβ) × А; , где А, В и С - матрицы, α и β - числа.

Умножение матриц (Произведение матриц):

Операция умножения двух матриц вводится только для случая, когда число столбцов первой матрицы равно числу строк второй матрицы . Произведением матрицы А m×n на матрицу В n×p , называется матрица С m×p такая, что с ik = a i1 × b 1k + a i2 × b 2k + ... + a in × b nk , т. е. находиться сумма произведений элементов i - ой строки матрицы А на соответствующие элементы j - ого столбца матрицы В. Если матрицы А и В квадратные одного размера, то произведения АВ и ВА всегда существуют. Легко показать, что А × Е = Е × А = А, где А квадратная матрица , Е - единичная матрица того же размера.

Свойства умножения матриц:

Умножение матриц не коммутативно, т.е. АВ ≠ ВА даже если определены оба произведения. Однако, если для каких - либо матриц соотношение АВ=ВА выполняется, то такие матрицы называются перестановочными. Самым характерным примером может служить единичная матрица , которая является перестановочной с любой другой матрицей того же размера. Перестановочными могут быть только квадратные матрицы одного и того же порядка. А × Е = Е × А = А

Умножение матриц обладает следующими свойствами: 1. А × (В × С) = (А × В) × С; 2. А × (В + С) = АВ + АС; 3. (А + В) × С = АС + ВС; 4. α × (АВ) = (αА) × В; 5. А × 0 = 0; 0 × А = 0; 6. (АВ) Т = В Т А Т; 7. (АВС) Т = С Т В Т А Т; 8. (А + В) Т = А Т + В Т;

2. Определители 2-го и 3-го порядков. Свойства определителей.

Определителем матрицы второго порядка, или определителем второго порядка, называется число, которое вычисляется по формуле:

Определителем матрицы третьего порядка, или определителем третьего порядка, называется число, которое вычисляется по формуле:

Это число представляет алгебраическую сумму, состоящую из шести слагаемых. В каждое слагаемое входит ровно по одному элементу из каждой строки и каждого столбца матрицы . Каждое слагаемое состоит из произведения трех сомножителей.

Знаки, с которыми члены определителя матрицы входят в формулу нахождения определителя матрицы третьего порядка можно определить, пользуясь приведенной схемой, которая называется правилом треугольников или правилом Сарруса. Первые три слагаемые берутся со знаком плюс и определяются из левого рисунка, а последующие три слагаемые берутся со знаком минус и определяются из правого рисунка.

Определить количество слагаемых, для нахождения определителя матрицы , в алгебраической сумме, можно вычислив факториал: 2! = 1 × 2 = 2 3! = 1 × 2 × 3 = 6

Свойства определителей матриц

Свойства определителей матриц:

Свойство № 1:

Определитель матрицы не изменится, если его строки заменить столбцами, причем каждую строку столбцом с тем же номером, и наоборот (Транспонирование). |А| = |А| Т

Следствие:

Столбцы и строки определителя матрицы равноправны, следовательно, свойства присущие строкам выполняются и для столбцов.

Свойство № 2:

При перестановке 2-х строк или столбцов определитель матрицы изменит знак на противоположный, сохраняя абсолютную величину, т.е.:

Свойство № 3:

Определитель матрицы , имеющий два одинаковых ряда, равен нулю.

Свойство № 4:

Общий множитель элементов какого-либо ряда определителя матрицы можно вынести за знак определителя .

Следствия из свойств № 3 и № 4:

Если все элементы некоторого ряда (строки или столбца) пропорциональны соответствующим элементам параллельного ряда, то такой определитель матрицы равен нулю.

Свойство № 5:

определителя матрицы равны нулю, то сам определитель матрицы равен нулю.

Свойство № 6:

Если все элементы какой–либо строки или столбца определителя представлены в виде суммы 2-х слагаемых, то определитель матрицы можно представить в виде суммы 2-х определителей по формуле:

Свойство № 7:

Если к какой–либо строке (или столбцу) определителя прибавить соответствующие элементы другой строки (или столбца), умноженные на одно и тоже число, то определитель матрицы не изменит своей величины.

Пример применения свойств для вычисления определителя матрицы :

1-й курс, высшая математика, изучаем матрицы и основные действия над ними. Здесь мы систематизируем основные операции, которые можно проводить с матрицами. С чего начать знакомство с матрицами? Конечно, с самого простого - определений, основных понятий и простейших операций. Заверяем, матрицы поймут все, кто уделит им хотя бы немного времени!

Определение матрицы

Матрица – это прямоугольная таблица элементов. Ну а если простым языком – таблица чисел.

Обычно матрицы обозначаются прописными латинскими буквами. Например, матрица A , матрица B и так далее. Матрицы могут быть разного размера: прямоугольные, квадратные, также есть матрицы-строки и матрицы-столбцы, называемые векторами. Размер матрицы определяется количеством строк и столбцов. Например, запишем прямоугольную матрицу размера m на n , где m – количество строк, а n – количество столбцов.

Элементы, для которых i=j (a11, a22, .. ) образуют главную диагональ матрицы, и называются диагональными.

Что можно делать с матрицами? Складывать/вычитать , умножать на число , умножать между собой , транспонировать . Теперь обо всех этих основных операциях над матрицами по порядку.

Операции сложения и вычитания матриц

Сразу предупредим, что можно складывать только матрицы одинакового размера. В результате получится матрица того же размера. Складывать (или вычитать) матрицы просто – достаточно только сложить их соответствующие элементы . Приведем пример. Выполним сложение двух матриц A и В размером два на два.

Вычитание выполняется по аналогии, только с противоположным знаком.

На произвольное число можно умножить любую матрицу. Чтобы сделать это, нужно умножить на это число каждый ее элемент. Например, умножим матрицу A из первого примера на число 5:

Операция умножения матриц

Перемножить между собой удастся не все матрицы. Например, у нас есть две матрицы - A и B. Их можно умножить друг на друга только в том случае, если число столбцов матрицы А равно числу строк матрицы В. При этом каждый элемент получившейся матрицы, стоящий в i-ой строке и j-м столбце, будет равен сумме произведений соответствующих элементов в i-й строке первого множителя и j-м столбце второго . Чтобы понять этот алгоритм, запишем, как умножаются две квадратные матрицы:

И пример с реальными числами. Умножим матрицы:

Операция транспонирования матрицы

Транспонирование матрицы – это операция, когда соответствующие строки и столбцы меняются местами. Например, транспонируем матрицу A из первого примера:

Определитель матрицы

Определитель, о же детерминант – одно из основных понятий линейной алгебры. Когда-то люди придумали линейные уравнения, а за ними пришлось выдумать и определитель. В итоге, разбираться со всем этим предстоит вам, так что, последний рывок!

Определитель – это численная характеристика квадратной матрицы, которая нужна для решения многих задач.
Чтобы посчитать определитель самой простой квадратной матрицы, нужно вычислить разность произведений элементов главной и побочной диагоналей.

Определитель матрицы первого порядка, то есть состоящей из одного элемента, равен этому элементу.

А если матрица три на три? Тут уже посложнее, но справиться можно.

Для такой матрицы значение определителя равно сумме произведений элементов главной диагонали и произведений элементов лежащих на треугольниках с гранью параллельной главной диагонали, от которой вычитается произведение элементов побочной диагонали и произведение элементов лежащих на треугольниках с гранью параллельной побочной диагонали.

К счастью, вычислять определители матриц больших размеров на практике приходится редко.

Здесь мы рассмотрели основные операции над матрицами. Конечно, в реальной жизни можно ни разу так и не встретить даже намека на матричную систему уравнений или же наоборот - столкнуться с гораздо более сложными случаями, когда придется действительно поломать голову. Именно для таких случаев и существует профессиональный студенческий сервис . Обращайтесь за помощью, получайте качественное и подробное решение, наслаждайтесь успехами в учебе и свободным временем.