Положение нейтральной линии при внецентренном растяжении сжатии. Внецентренное растяжение – сжатие. Определение напряжений. Условия прочности. Тема: Экспериментальное исследование распределения напряжений при внецентренном растяжении или сжатии




Сила Р приложена в точке с координатами – х р, у р.

В этом случае говорят, что нагрузка по отношению к продольной оси z приложена с эксцентриситетом е (рис.8.2).

Напряжения в произвольной точке поперечного сечения определяются по формуле (8.3):

(8.3)

(+) перед выражением (8.3) соответствует внецентренному растяжению,

(–) - сжатию.

х, y – координаты точки, в которой определяются нормальные напряжения.

Условие прочности при внецентренном приложении нагрузки записывается для опасных точек А и В , наиболее удаленных от нейтральной линии.

(8.4)

Здесь - квадраты радиусов инерции.

R – расчетное сопротивление материала растяжения или сжатия.

8.2.2. Уравнение нейтральной линии

На нейтральной линии нормальные напряжения равны нулю.

Приравняв нулю выражение (8.3) получим уравнения нейтральной линии

(8.5)

x N , y N – координаты точек, лежащих на нейтральной линии.

Решая полученное уравнение (8.5) в отрезках по осям координат, можно определить положение нейтральной линии.

(8.6)

8.2.3. Ядро сечения

Многие строительные материалы хорошо работают на сжатие и практически не воспринимают растягивающих деформаций: бетон, кирпичная кладка. Поэтому возникает задача определения такой области в поперечном сечении бруса, чтобы прикладываемая внутри нее нагрузка, вызывала по всему сечению напряжения одного знака. Такая область называется ядром сечения. Ядро сечения – область, расположенная вокруг центра тяжести сечения, приложенная внутри которой нагрузка, вызывает по всему поперечному сечению напряжения одного знака.

Для построения ядра сечения задаются положениями нейтральной линии, совпадающей со сторонами сечения N i (х N и у N ) и в соответствии с формулой (8.5) определяют две координаты точки приложения силы соответствующей этой линии

Проведя по всему контуру сечения нейтральные линии, получим n точек. На основании теоремы о вращении нейтральной линии, соединив последовательно полученные точки, получим ядро сечения (рис. 8.3). Для прямоугольного поперечного сечения ядром сечения является ромб.

Устойчивость сжатых стержней

Общие положения

Явление потери устойчивости сжатого стержня наблюдается в том случае, когда при известной форме и размерах поперечного сечения его длина превышает определенное значение.

При потере устойчивости элемента происходит нарушение первоначальной прямолинейной формы равновесия.

Различают устойчивое (а ), безразличное (b ) и не устойчивое (с ) состояние равновесия (рис. 9.1).




Продольный изгиб опасен тем, что происходит большое нарастание прогибов при малом росте сжимающей нагрузки.

Потеря устойчивости гибких стержней наступает при сравнительно небольших сжимающих напряжениях, которые с точки зрения прочности материала являются не опасными.

Рассмотрим прямой стержень, нагруженный на торце силами, направленными параллельно оси Ох. Равнодействующая этих сил F приложена в точке С. В локальной правосторонней системе координат yOz , совпадающей с главными центральными осями сечения, координаты точки С равны а и b (рис. 5.18).

Заменим приложенную нагрузку статически эквивалентной ей системой сил и моментов. Для этого перенесем равнодействующую силу F в центр тяжести сечения О и догрузим стержень двумя изгибающими моментами, равными произведению силы Т^на ее плечи относительно осей координат: M ff = Fa и M z = Fb.

Отметим, что по правилу правосторонней системы координат для точки С, лежащей в первой четверти, изгибающие моменты формально получат сле-

Рис. 5.18. Прямой стержень, нагруженный на торце силами, направленными параллельно оси Ох

дующие знаки: М у = Fa и М 7 = -Fb. При этом в элементарной площадке, лежащей в первой четверти, оба момента вызывают растягивающее напряжение.

Используя принцип независимости действия сил, определим напряжения в текущей точке сечения с координатами у и z от каждого силового фактора отдельно. Общее напряжение получим суммированием всех трех составляющих напряжений:

Определим положение нейтральной оси. Для этого в соответствии с формулой (5.69) приравняем к нулю значение нормального напряжения в текущей точке:

В результате простых преобразований получим уравнение нейтральной линии

где i y и i z - главные радиусы инерции , определяемые по формулам (3.14).

Таким образом, в случае внецентренного растяжения-сжатия нейтральная линия не проходит через центр тяжести сечения (рис. 5.19), на что указывает наличие в уравнении (5.70) отличающегося от нуля свободного члена.

Максимальные напряжения возникают в точках сечения А и В, наиболее удаленных от нейтральной линии. Установим соотношение между координатами точки приложения силы и положением нейтральной линии. Для этого определим точки пересечения этой линией координатных осей:

Рис. 5.19.

Полученные формулы показывают, что координата точки приложения силы а и координата точки пересечения нейтральной линией оси координат Oz (точка г 0) имеют противоположные знаки. То же самое можно сказать о величинах b и у 0 . Таким образом, точка приложения равнодействующей силы и нейтральная линия находятся по разные стороны относительно начала координат.

Согласно полученным формулам при приближении точки приложения силы к центру тяжести сечения нейтральная линия отдаляется от центральной зоны. В предельном случае (а = b = 0) приходим к случаю центрального растяжения-сжатия.

Представляет интерес определение зоны приложения силы, при котором напряжения в сечении будут иметь одинаковый знак. В частности, для материалов, плохо сопротивляющихся растяжению, сжимающую силу рационально прилагать именно в этой зоне, чтобы в сечении действовали только сжимающие напряжения. Такая зона вокруг центра тяжести сечения называется ядром сечения.

Если сила приложена в ядре сечения, то нейтральная линия не пересекает сечение. В случае приложения силы по границе ядра сечения нейтральная линия касается контура сечения. Для определения ядра сечения можно использовать формулу (5.71).

Если нейтральную линию представить как касательную к контуру сечения и рассмотреть все возможные положения касательной и соответствующие этим положениям точки приложения силы, то точки приложения силы очертят ядро сечения.


Рис. 5.20.

а - эллипс; 6 - прямоугольник

Рис. 12.3. Внецентренное растяжение бруса

Напряжения в произвольной точке сечения с координатами (x, y) на основании принципа независимости действия сил можно вычислить следующим образом (сумма алгебраическая)

Их уравнения (12.4) следует, что эпюра напряжений в рассматриваемом сечении образует плоскость. Уравнение нейтральной линии, в точках которой нормальные напряжения равны нулю, получим из (12.4), приравняв выражение нулю, т.е.

(12.5)

Из полученного уравнения следует, что нейтральная линия не проходит через центр тяжести сечения, который совпадает с началом координат. Кроме того, если координаты точки приложения силы (x 0 , y 0) положительны, то по крайней мере одна из координат x или y уравнения (12.4) должна быть отрицательной и следовательно, если точка приложения силы находится в первом квадранте, то нейтральная линия должна проходить через квадранты 2,3 и 4 (рис. 12.4).

Известно (аналитическая геометрия), что если прямая задана уравнением вида

то расстояние от начала координат до прямой будет равно

В рассматриваемом случае (12.5) получаем (рис. 12.4)

(12.5а)

Из полученного выражения следует, что при приближении точки приложения силы Р к центру тяжести сечения, т.е. при уменьшении значения координат x 0 , y 0 , расстояние ρ от центра тяжести сечения до нейтральной линии увеличивается.

σ C
x
y
А

Рис.12.4. Распределение напряжений при внецентренном растяжении

В пределе при x 0 =y 0 =0, т.е. когда сила Р приложена в центре тяжести сечения, нейтральная линия находится в бесконечности. При этом имеет место простое (центральное) растяжение или сжатие, все напряжения в сечении одного знака и равны между собой.

Если нейтральная линия пересекает сечение, то с одной стороны от нее возникает зона растяжения, а с другой – зона сжатия (рис.12.4). Проводя линии, параллельные нейтральной и касательные к контуру сечения, можно найти наиболее удаленные точки от нейтральной линии, в которых нормальные напряжения достигают своих максимальных значений. В рассмотренном случае это точки C и D.

Условия прочности в данных точках запишем в виде

где x C , y C , x D , y D – координаты опасных точек. Знаки слагаемых в формулах (12.6) выбираются исходя из анализа направлений действия изгибающих моментов и нормальной силы. Если нейтральная линия не пересекает поперечное сечение, то все нормальные напряжения будут одного знака.

Область в окрестности центра тяжести сечения, обладающая тем свойством, что при приложении силы Р в пределах этой области, напряжения во всех точках сечения будут одного знака, называется ядром сечения .

Некоторые материалы (бетон, кирпич, серый чугун) сопротивляются растяжению значительно хуже, чем сжатию. Для соответствующих конструкций важно, чтобы в материале не возникали растягивающие напряжения, а значит сжимающая силы должна быть приложена в пределах ядра сечения.

Если сила при внецентренном растяжении (сжатии) приложена на границе ядра сечения, то нейтральная линия касается контура сечения. Это условие используется для определения размеров ядра сечения. Например, для бруса круглого поперечного сечения из условия геометрической симметрии следует, что ядро сечения должно иметь форму круга (рис. 12.5). Пусть точка приложения силы Р находится на оси Oy на расстоянии от начала координат равном r (координаты точки приложения силы – x 0 =0, y 0 =r). Уравнение нейтральной линии в данном случае принимает вид (см. формулу 12.5)

Это уравнение прямой параллельной оси Ox. Так как ядро сечения представляет собой окружность радиуса r, то нейтральная линия должна касаться контура в точке А (рис. 12.5). Расстояние от начала координат да нейтральной линии равно радиусу окружности поперечного сечения бруса R. Тогда, с учетом выражения (12.5а), находим

Отсюда r=R/4, т.е. ядро бруса круглого поперечного сечения радиусом R представляет собой круг радиусом R/4.

Для определения внутренних усилий, в поперечных сечениях бруса при внецентренном растяжении (сжатии) заменим заданную систему сил на статически эквивалентную систему других сил. На основании принципа Сен-Венана такая замена не вызовет изменений в условиях нагружения и деформации частей бруса, достаточно удаленных от места приложения сил.

Сначала перенесем точку приложения силы на ось и приложим в этой точке силу, равную силе, но противоположно направленную (рис.3.2). Чтобы оставить силу на оси, к ее действию необходимо добавить действие пары сил, отмеченных двумя чертами, или момент. Далее перенесем силу в центр тяжести сечения и в этой точке приложим силу, равную силе, но противоположно направленную (рис.3.2). Чтобы оставить силу в центре тяжести, к ее действию необходимо добавить еще одну пару сил, отмеченных крестиками, или момент.

Таким образом, действие силы, приложенной к сечению внецентренно, эквивалентно совместному действию центрально приложенной силы и двух внешних сосредоточенных моментов и.

Пользуясь методом сечений, нетрудно установить, что во всех попе­речных сечениях внецентренно растянутого (сжатого) бруса действуют следующие внутренние силовые факторы: продольная сила и два изги­бающих момента и (рис.3.3).

Напряжения в поперечных сечениях бруса определим, используя прин­цип независимости действия сил. От всех внутренних силовых факторов в поперечных сечениях возникают нормальные напряжения. Знаки напряжений устанавливают по характеру деформаций: плюс - растяжение, минус - сжатие. Расставим знаки напряжений от каждого из внутренних силовых факторов в точках, пересечения осей и с контуром поперечного сечения (рис.3.3). От продольной силы во всех точках сечения оди­наковы и положительны; от момента в точке напряжения - плюс, в точке - минус, в точках и, т.к. ось является в этом случае нейтральной линией; от момента в точке напряжения - плюс, в точке - минус, в точках и, т.к. ось в этом случае является нейтральной линией.

Полное напряжение в точке с координатами и, будет равно:

Самой нагруженной точкой в сечении произвольной формы является точка, наиболее удаленная от нейтральной линии. В связи с этим, большое значение приобретают вопросы, связанные с определением положения нейтральной линии.

Определение положения нейтральной линии

Положение нейтральной линии можно определить с помощью формулы (3.1), приравняв нормальные напряжения нулю



здесь и - координаты точки, лежащей на нейтральной линии.

Последнее выражение можно преобразовать, используя формулы для радиусов инерции: и. Тогда

Из уравнения (3.2) видно, что нейтральная линия при внецентренном растяжении (сжатии) - это прямая, не проходящая через начало координат (центр тяжести поперечного сечения).

Проведем эту прямую через две точки, лежащие на координатных осях (рис. 3.4). Пусть точка 1 лежит на оси, тогда ее координатами будет и, а точка 2 – на оси, тогда ее координатами будет и (на основании уравнения (3.2)).

Если координаты точки приложения силы (полюса) положительны, то координаты точек 1 и 2 отрицательны, и наоборот. Таким образом, полюс и нейтральная линия располагаются по разные стороны от начала координат.

Определения положения нейтральной линии позволяет выявить опасные точки сечения, т.е. точки, в которых нормальные напряжения принимают наибольшие значения. Для этого следует построить касательные к контуру сечения, параллельные нейтральной линии. Точки касания и будут являться опасными (рис. 3.4).

Условия прочности для опасных точек составляют в зависимости от свойств того материала, из которого изготовлен брус. Так как хрупкий материал обладает различными свойствами в условиях растяжения и сжатия – плохо сопротивляется растяжению и хорошо сжатию, условия прочности составляют для двух точек: где действуют максимальные растягивающие (т.) и максимальные сжимающие (т.) напряжения (рис. 3.4)

Для пластичного материала, который одинаково сопротивляется и растяжению и сжатию, составляют одно условие прочности для точки поперечного сечения, где имеют место максимальные по абсолютной величине нормальные напряжения. В нашем случае такой точкой является точка, в которой действуют напряжения одного знака

Понятие о ядре сечения

При построении нейтральной линии (рис. 3.4) определялись координаты точек 1 и 2, через которые она и проводилась



Координаты точек, лежащих на нейтральной линии, зависят от положения точки приложения силы (полюса) с координатами. Если координаты полюса уменьшаются, т.е. полюс приближается к центру тяжести сечения, то увеличиваются, т.е. нейтральная линия может выйти за пределы сечения или касаться контура сечения. В этом случае в сечении будут иметь место напряжения одного знака.

Область приложения продольных сил, которые в этом случае вызывают в поперечном сечении напряжения одного знака, называется ядром сечения .

Вопрос определения ядра сечения является наиболее актуальным для элементов конструкций из хрупкого материала, работающих на внецентренное сжатие, с целью получения в поперечном сечении только сжимающих напряжений, т.к. хрупкий материал плохо сопротивляется деформации растяжения. Для этого необходимо задаться рядом положений нейтральной линии, проводя ее через граничные точки контура, и вычислить координаты соответствующих точек приложения силы, по формулам, вытекающим из (3.5).

Геометрическое место рассчитанных таким образом точек и определит контур ядра сечения. На рис. 3.6 показаны примеры ядра сечения для распространенных форм.

Рассмотрим пример расчетов на внецентренное растяжение-сжатие.

Пример 3.1. Стальная полоса шириной =10 см и толщиной =1 см, центрально растянутая силами =70 кН, имеет прорезь шириной =3 см (рис. 3.6). Определить наибольшие нормальные напряжения в сечении, не учитывая концентрации напряжений. Какой ширины могла бы быть прорезь при той же величине растягивающего усилия, если бы она была расположена посередине ширины полосы?

Решение. При несимметричной прорези центр тяжести ослабленного сечения смещается от линии действия силы вправо и возникает внецентренное растяжение. Для определения положения центра тяжести () ослабленное сечение представим как большой прямоугольник размерами (фигура I) из которого удален малый прямоугольник с размерами (фигура II). За исходную ось примем ось.

В этом случае в поперечном сечении возникает два внутренних силовых фактора: продольная сила и изгибающий момент.

С целью определения опасной точки расставим знаки напряжений по боковым сторонам поперечного сечения (рис. 3.6). От продольной силы во всех точках сечения имеют место положительные (растягивающие) напряжения. От изгибающего момента слева от оси имеют место растягивающие напряжения (знак плюс), справа – сжимающие (знак минус).

Таким образом, максимальные нормальные напряжения возникают в т.

где - площадь ослабленного сечения, равная =7 см 2 ;

Момент инерции ослабленного сечения относительно главной центральной оси

Расстояние от нейтральной линии () до наиболее удаленной точки (т.)

В результате максимальные нормальные напряжения будут равны

При симметричной прорези шириной возникает только растяжение