Электроны по уровням. Распределение электронов по энергетическим уровням атома. Основы зонной теории




Так как при химических реакциях ядра реагирующих атомов остаются без изменения, то химические свойства атомов зависят прежде всего от строения электронных оболочек атомов. Поэтому мы подробнее остановимся на распределении электронов в атоме и главным образом тех из них, которые обусловливают химические свойства атомов (так называемые валентные электроны), а следовательно, и периодичность в свойствах атомов и их соединений. Мы уже знаем, что состояние электронов можно описать набором четырех квантовых чисел, но для объяснения строения электронных оболочек атомов нужно знать еще три следующих основных положения: 1) принцип Паули, 2) принцип наименьшей энергии и 3) пробило Гунда. Принцип Паули. В 1925 г. швейцарский физик В. Паули установил правило, названное впоследствии принципом Паули (или запретом Паули): в атоме ве может быть двух электронов, обладающих одинаковыми своисгя&ми. Зная, что свойства электронов характеризуются квантовыми числами, принцип Паули можно сформулировать и таким образом: в атоме не может быть двух электронов, у которых все четыре квантовых числа были бы одинаковы. Хотя бы одно из квантовых чисел л, /, mt или т3 должно обязательно отличаться. Так, электроны с одинаковыми кван- В дальнейшем условимся графически обозначать электроны, имеющие значения s= + lj2> стрелкой Т, и, имеющие значения J- ~lf2 - стрелкой Два электрона, имеющие одинаковые спины, часто называют электронами с параллельными спинами н обозначают ft (или Ц). Два электрона, имеющие противоположные спины, называют электронами с аптипараллелъными спинами н обозначают | J- товыми числами л, I и mt должны обязательно различаться спинами. Поэтому в атоме могут быть лишь два элекгрона с одинаковыми л, / и т,\ один с т,= -1/2, другой с тм= + 1/2. Напротив, если спины двух электронов одинаковы, должно отличаться одно из квантовых чисел: п, / или mh Зная принцип Паули, посмотрим теперь, сколько же электронов в атоме может находиться на определенной «орбите» с главным квантовым числом п. Первой «орбите» соответствует п= 1. Тогда /=0, mt-0 и тл может иметь произвольное значение: +1/2 или -1/2. Мы видим, что если п- 1, таких электронов может быть только два. В общем случае, при любом заданном значении л электроны прежде всего отличаются побочным квантовым числом /, принимающим значения от 0 до л-1. При заданных ли/ может бьггь (2/+1) электронов с разными значениями магнитного квантового числа т,. Это число должно быть удвоено, так как заданным значениям л, / и т{ соответствуют два разных значения проекции спина тх. Следовательно, максимальное число электронов с одинаковым квантовым числом л выражается суммой Отсюда ясно, почему на первом энергетическом уровне может быть не больше 2 электронов, на втором - 8, на третьем - 18 и т. д. Рассмотрим, например, атом водорода iH. В атоме водорода iH имеется один электрон, и спин этого электрона может быть направлен произвольно (т. е. ms^ + ij2 или mt= -1 /2), и электрон находится в s-co стоянии на первом энергетическом уровне с л- 1 (напомним еще раз, что первый энергетический уровень состоит из одного подуровня - 15, второй энергетический уровень - из двух подуровней - 2s и 2р, третий - из трех подуровней - 3*, Зру 3d и т. д.). Подуровень, в свою очередь, делится на квантовые ячейки* (энергетические состояния, определяемые числом возможных значений т{, т. е. 2/4-1). Ячейку принято графически изображать прямоугольником, направление спина электрона - стрелками. Поэтому состояние электрона в атоме водорода iH можно представить как Ijt1, или, что то же самое, Под «квантовой ячейкой» подразумеваете* орбиталь, характеризуемая одинаковым набором значений квантовых чисел п, I и т* в каждой ячейке могут помещаться максимум два электрона с аятипараллельными спинами, что обозначается ti- Распределение электронов в атомах В атоме гелия 2Не квантовые числа п- 1, /=0 и т{-0 одинаковы для обоих его электронов, а квантовое число т3 отличается. Проекции спина электронов гелия могут быть mt= +V2 и ms= - V2. Строение электронной оболочки атома гелия 2Не можно представить как Is-2 или, что то же самое, 1S И Изобразим строение электронных оболочек пяти атомов эле ментов второго периода периодической таблицы Менделеева: То, что электронные оболочки бС, 7N и вО должны быть заполнены именно так, заранее не очевидно. Приведенное расположение спинов определяется так называемым правилом Гунда (впервые сформулировано в 1927 г. немецким физиком Ф. Гун-дом). Правило Гунда. При данном значении I (т. е. в пределах определенного подуровня) электроны располагаются таким образом, чтобы суммарный ста* был максимальным. Если, например, в трех /^-ячейках атома азота необходимо распределить три электрона, то они будут располагаться каждый в отдельной ячейке, т. е. размещаться на трех разных р-ор-биталях: В этом случае суммарный спин равен 3/2, поскольку его проекция равна т3 - 4-1/2 + А/2+1/2 = 3/2* Эти же три электрона не могут быть расположены таким образом: 2р НИ потому что тогда проекция суммарного спина тм= +1/2 -1/2+ + 1/2=1/2. По этой причине именно так, как приведено выше, расположены электроны в атомах углерода, азота и кислорода. Рассмотрим далее электронные конфигурации атомов следующего третьего периода. Начиная с натрия uNa, заполняется третий энергетический уровень с главным квантовым числом п-3. Атомы первых восьми элементов третьего периода обладают следующими электронными конфигурациями: Рассмотрим теперь электронную конфигурацию первого атома четвертого периода калия 19К. Первые 18 электронов заполняют следующие орбитали: ls12s22p63s23p6. Казалось бы; что девятнадцатый электрон атома калия должен попасть на подуро-вань 3d, которому соответствуют п = 3 и 1=2. Однако на самом деле валентный электрон атома калия располагается на орбитали 4s. Дальнейшее заполнение оболочек после 18-го элемента происходит не в такой последовательности, как в двух первых периодах. Электроны в атомах располагаются в соответствии с принципом Паули и правилом Гунда, но так, чтобы их энергия была наименьшей. Принцип наименьшей энергии (наибольший вклад в разработку этого принципа внес отечественный ученый В. М. Клечковс-кий) - в атоме каждый электрон располагается так, чтобы его энергия была минимальной (что отвечает наибольшей его связи с ядром). Энергия электрона в основном определяется главным квантовым числом п и побочным квантовым числом /, поэтому сначала заполняются те подуровни, для которых сумма значений квантовых чисел пи/ является наименьшей. Например, энергия электрона на подуровне 4s меньше, чем на подуровне 3d, так как в первом случае п+/=4+0=4, а во втором п+/=3+2= 5; на подуровне 5* (п+ /=5+0=5) энергия меньше, чем на Ad (л + /=4+ 4-2=6); на 5р (л+/=5 +1 = 6) энергия меньше, чем на 4/(л-f/= =4+3=7), и т. д. Именно В. М. Клечковский впервые в 1961 г. сформулировал общее положение, гласящее, что электрон занимает в основном состоянии уровень не с минимальным возможным значением п, а с наименьшим значением суммы л+/« В том случае, когда для двух подуровней суммы значений пи/ равны, овачала идет заполнение подуровня с меньшим значением п. Например, на подуровнях 3d, Ар, 5s сумма значений пи/ равна 5. В этом случае происходит сначала заполнение подуровней с меньшими значениями л, т. е. 3dAp-5s и т. д. В периодической системе элементов Менделеева последовательность заполнения электронами уровней и подуровней выглядит следующим образом (рис. 2.4). Распределение электронов в атомах. Схема заполнения электронами энергетических уровней и подуровней Следовательно, согласно принципу наименьшей энергии во многих случаях электрону энергетически выгоднее занять подуровень «вышележащего» уровня, хотя подуровень «нижележащего» уровня не заполнен: Именно поэтому в четвертом периоде сначала заполняется подуровень 4s и лишь после этого подуровень 3d.

Тема урока: «Распределение электронов по атомным орбиталям»

Цель: изучить распределение электронов по орбиталям

Развивающая: развитие логического мышления по средствам установления причинно-следственных связей.

Образовательная: изучить такие понятия как: электронное облако, орбиталь, атомная орбиталь, формы существования орбиталей, правила заполнения орбиталей.

Положение элемента в периодической таблице обуславливает его свойства, порядковый номер- показывает заряд ядра атома, номер периода-количества энергетических уровней, номер группы-число электронов на последнем энергетическом уровне.

Электроны распределяются вокруг ядра по энергетическим уровням и движутся по определенным атомным орбиталям.

Атомная орбиталь – это область наиболее вероятного пребывания электрона в электрическом поле ядра атома

Положение элемента в пс определяет тип его орбиталей, различающихся формой, размерами

s-орбиталь

p- орбиталь

d- орбиталь

для элементов первого периода характерна одна эс орбиталь, у элементов 2 периода к эс орбитали добавляется п орбиталь, у элементов 3 периода появляется d

Порядок заполнения уровней и подуровней электронами .

I. Электронные формулы атомов химических элементов составляют в следующем порядке:

· Определяем по номеру элемента в таблице Д. И. Менделеева общее число электронов в атоме;

· По номеру периода необходимо определить число энергетических уровней;

· Уровни разбиваются на подуровни и орбитали, и заполняются электронами в соответствии Принципом наименьшей энергии

· Для удобства электроны можно распределить по энергетическим уровням, воспользовавшись формулой N=2n2 и с учётом того, что:

1. у элементов главных подгрупп (s-;p-элементы) число электронов на внешнем уровне равно номеру группы.

2. у элементов побочных подгрупп на внешнем уровне обычно два электрона (исключение составляют атомы Cu, Ag, Au, Cr, Nb, Mo, Ru, Rh , у которых на внешнем уровне один электрон, у Pd на внешнем уровне ноль электронов);

3. число электронов на предпоследнем уровне равно общему числу электронов в атоме минус число электронов на всех остальных уровнях.

II. Порядок заполнения электронами атомных орбиталей определяется :

1.Принципом наименьшей энергии

Шкала энергий :

III. Семейства химических элементов.

Элементы, в атомах которых происходит заполнение электронами s-подуровня внешнего s-элементами . Это первые 2 элемента каждого периода, составляющие главные подгруппы I и II групп.

Элементы, в атомах которых электронами заполняется p-подуровень внешнего энергетического уровня, называются p-элементами . Это последние 6 элементов каждого периода (за исключением I и VII ), составляющие главные подгруппы III-VIII групп.

Элементы, в которых заполняется d-подуровень второго снаружи уровня, называются d-элементами . Это элементы вставных декад IV, V, VI периодов.

Элементы, в которых заполняется f-подуровень третьего снаружи уровня, называются f-элементами . К f-элементам относятся лантаноиды и актиноиды.

Распределение электронов в атоме осуществляется в соответствии с 3 положениями квантовой механики: принципом Паули ; принципом минимальной энергии; правилом Хунда.

Согласно принципу Паули в атоме не может быть двух электронов с одинаковыми значениями всех четырех квантовых чисел. Принцип Паули определяет максимальное число электронов на одной орбитали, уровне и подуровне. Так как АО характеризуется тремя квантовыми числами n, l, ml , электроны данной орбитали могут различаться только спиновым квантовым числом ms . Но ms может иметь только два значения +½ и -½.

Следовательно, на одной орбитали может находиться не более двух электронов с противоположно направленными спинами . Максимальное число электронов на энергетическом уровне определяется как 2n 2 , а на подуровне - как 2 (2l +1). Максимальное число электронов, размещающихся на различных уровнях и подуровнях, приведены в табл. 2.1.

Максимальное число электронов на квантовых уровнях и подуровнях

Энергетический уровень Энергетический подуровень Возможные значения магнитного квантового числа ml Число АО в Максимальное число электронов на
подуровне уровне подуровне уровне
K (n = 1) s (l = 0)
L (n = 2) s (l = 0) p (l = 1) -1, 0, 1
M (n = 3) s (l = 0) p (l = 1) d (l = 2) -1, 0, 1 -2, -1, 0, 1, 2
N (n = 4) s (l = 0) p (l = 1) d (l = 2) f (l = 3) -1, 0, 1 -2, -1, 0, 1, 2 -3, -2, -1, 0, 1, 2, 3

Последовательность заполнения электронами орбиталей осуществляется в соответствии с принципом минимальной энергии , согласно которому электроны заполняют орбитали в порядке повышения уровня энергии орбиталей. Очередность орбиталей по энергии определяется правилом Клечковского : увеличение энергии, и соответственно, заполнение орбиталей происходит в порядке возрастания суммы (n + l), а при равной сумме (n + l) - в порядке возрастания n.

Порядок распределения электронов по энергетическим уровням и подуровням в оболочке атома называется его электронной конфигурацией . При записи электронной конфигурации номер уровня (главное квантовое число) обозначают цифрами 1, 2, 3, 4…, подуровень (орбитальное квантовое число) - буквами s, p, d, f . Число электронов в подуровне обозначается цифрой, которая записывается вверху у символа подуровня. Например, электронная конфигурация атома серы имеет вид 16 S 1s 2 2s 2 2p 6 3s 2 3p 4 , а ванадия 23 V 1s 2 2s 2 2p 6 3s 2 3p 6 3d°/i> 3 4s 2 .


Химические свойства атомов определяются, в основном, строением наружных энергетических уровней, которые называются валентными . Полностью завершенные энергетические уровни в химическом взаимодействии не участвуют. Поэтому часто для краткости записи электронной конфигурации атома их обозначают символом предшествующего благородного газа. Так, для серы: 3s 2 3p 4 ; для ванадия: 3d 3 4s 2 . Одновременно сокращенная запись наглядно выделяет валентные электроны, определяющие химические свойства атомов элемента.

В зависимости от того, какой подуровень в атоме заполняется в последнюю очередь, все химические элементы делятся на 4 электронных семейства: s-, p-, d-, f - элементы. Элементы, у атомов которых в последнюю очередь заполняется s-подуровень внешнего уровня, называются s-элементами . У s- элементов валентными являются s -электроны внешнего энергетического уровня.

У р-элементов последним заполняется р-подуровень внешнего уровня . У них валентные электроны расположены на p- и s- подуровнях внешнего уровня. У d-элементов в последнюю очередь заполняется d-подуровень предвнешнего уровня и валентными являются s- электроны внешнего и d- электроны предвнешнего энергетического уровней. У f-элементов последним заполняется f-подуровень третьего снаружи энергетического уровня.

Электронная конфигурация атома может быть изображена также в виде схем размещения электронов в квантовых ячейках, которые являются графическим изображением атомной орбитали. В каждой квантовой ячейке может быть не более двух электронов с противоположно направленными спинами . Порядок размещения электронов в пределах одного подуровня определяется правилом Хунда: в пределах подуровня электроны размещаются так, чтобы их суммарный спин был максимальным. Иными словами, орбитали данного подуровня заполняются сначала по одному электрону с одинаковыми спинами, а затем по второму электрону с противоположными спинами.

Суммарный спин р- электронов третьего энергетического уровня атома серы Sms = ½ - ½ + ½ + ½ = 1; d -электронов атома ванадия -

Sms = ½ + ½ + ½ = 3 / 2 .

Часто графически изображают не всю электронную формулу, а лишь те подуровни, на которых находятся валентные электроны, например,

16 S…3s 2 3p 4 ; 23 V…3d 3 4s 2 .

При графическом изображении электронной конфигурации атома в возбужденном состоянии наряду с заполненными изображают вакантные валентные орбитали. Например, в атоме фосфора на третьем энергетическом уровне имеются одна s -АО, три р -АО и пять d -АО. Электронная конфигурация атома фосфора в основном состоянии имеет вид

15 Р… 3s 2 3p 3 .

Валентность фосфора, определяемая числом неспаренных электронов, равна 3. При переходе атома в возбужденное состояние происходит распаривание электронов состояния 3s и один из электронов с s -подуровня может перейти на d -подуровень:

Р*… 3s 2 3p 3 3d 1

При этом валентность фосфора меняется с трех (РСl 3) в основном состоянии до пяти (РCl 5) в возбужденном состоянии.

Первый способ : Электроны легко можно распределить по подуровням исходя из некоторых правил. Во первых нужна цветная таблица. Представим каждый элемент как один новый электрон, Каждый период – это соответствующий уровень, s.p-электроны всегда в своём периоде, d-электроны на уровень ниже (3 d-электроны в гостях в 4-ом периоде), f-электроны на 2 уровня ниже. Просто берём таблицу и читаем исходя из цвета элемента, у s, p- элементов номер уровня соответствует номеру периода, если доходим до d-элемента пишем уровень на один меньше, чем номер периода, в котором этот элемент находится (если элемент в 4-м периоде, следовательно, 3 d). Также поступаем и с f-элементом, только уровень указываем меньше чем номер периода на 2 значения (если элемент в 6-м периоде, следовательно, 4 f).

Второй способ : Нужно отобразить все подуровни в виде одной клеточки, и уровни расположить друг под другом симметрично подуровень под подуровнем. В каждой ячейке написать максимальное количество электронов данного подуровня. И последним этапом нанизать подуровни по диагонали (от верхнего уголка к нижнему) стрелой. Считывать подуровни сверху вниз в сторону кончика стрелы, до количества электронов нужного атома.

Скачать:


Предварительный просмотр:

Мастер класс на тему: «Порядок заполнения электронами энергетических уровней атомов».

Цель занятия: Рассмотреть варианты более быстрой формы записи краткой электронной конфигурации атома.

В зависимости от того, какой подуровень в атоме заполняется в последнюю очередь, все химические элементы делятся на 4 электронных семейства: s-, p-, d-, f-элементы. Элементы, у атомов которых в последнюю очередь заполняется s-подуровень внешнего уровня, называются s-элементами. У s-элементов валентными являются s-электроны внешнего энергетического уровня. У р-элементов последним заполняется р-подуровень внешнего уровня. У них валентные электроны расположены на p- и s-подуровнях внешнего уровня. У d-элементов в последнюю очередь заполняется d-подуровень предвнешнего уровня и валентными являются s-электроны внешнего и d-электроны предвнешнего энергетического уровней. У f-элементов последним заполняется f-подуровень третьего снаружи энергетического уровня.

Электронная конфигурация атома может быть изображена также в виде схем размещения электронов в квантовых ячейках, которые являются графическим изображением атомной орбитали. В каждой квантовой ячейке может быть не более двух электронов с противоположно направленными спинами ↓ . Порядок размещения электронов в пределах одного подуровня определяется правилом Хунда: в пределах подуровня электроны размещаются так, чтобы их суммарный спин был максимальным. Иными словами, орбитали данного подуровня заполняются сначала по одному электрону с одинаковыми спинами, а затем по второму электрону с противоположными спинами.

Для записи электронной конфигурации атома можно применить несколько способов.

Первый способ:

Для выбранного элемента по его местоположению в периодической таблице химических элементов Д.И.Менделеева можно записать матрицу строения электронной оболочки атома, соответствующую данному периоду.

Например , элемент иод: 127 53 I 1s2s2p3s3p3d4s4p4d4f5s5p5d5f

По таблице, последовательно переходя от элемента к элементу, можно заполнить матрицу в соответствии с порядковым номером элемента и порядком заполнения подуровней:

127 53 I 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 4f 0 5s 2 5p 5 5d 0 5f 0

Но, подуровни заполняются в последовательности s-f-d-p, и при использовании данного способа мы не наблюдаем поочерёдности в заполнении электронных оболочек.

Второй способ:

Можно рассмотреть порядок заполнения уровней и подуровней электронами, используя понятия основного принципа - принципа наименьшего запаса энергии: наиболее устойчиво состояние атома, при котором его электроны имеют наименьшую энергию.

Т.е. основываясь на Запрете Паули, Правилах Хунда и Клечковского

Запрет Паули : в атоме не может быть двух электронов, четыре квантовых числа которых одинаковы (т.е. каждая атомная орбиталь не может быть заполнена более чем двумя электронами, причем с антипараллельными спинами.)

Правило Хунда : электроны располагаются на одинаковых орбиталях таким образом, чтобы суммарное спиновое число их было максимальным, т.е. наиболее устойчивому состоянию атома соответствует максимально возможное число неспаренных электронов с одинаковыми спинами.

Правила Клечковского : А) Заполнение электронных слоев электронами начинается с уровней и подуровней, обладающими самыми низкими значениями n и l, и идет в порядке возрастания n+l;

Б) Если для двух орбиталей сумма n+l окажется одинаковой, то в первую очередь электронами заполняется орбиталь с меньшим значением n.

Первый случай не показывает последовательность заполнения подуровней, а второй- требует время для построения таблицы.

Таблица № 2

Порядок заполнения электронами энергетических уровней атомов.

Квантовые числа

Сумма квантовых чисел

n + l

Заполняемая орбиталь

При распределении электронов в атоме К в соответствии с правилом Клечковского предпочтение отдается орбитали 4s

Следовательно, для атома калия распределение электронов по орбиталям (электронно-графическая формула) имеет вид

Скандий относится к d-элементам, и его атом характеризуется следующим распределением электронов по орбиталям:

Исходя из правила Клечковского мы видим порядок последовательного заполнения подуровней. Первый случай не показывает последовательность заполнения подуровней, а второй - требует время для построения таблицы. Поэтому я вам предлагаю более приемлемые варианты последовательного заполнения орбиталей.

Первый способ : Электроны легко можно распределить по подуровням исходя из некоторых правил. Во первых нужна цветная таблица. Представим каждый элемент как один новый электрон, Каждый период – это соответствующий уровень, s.p-электроны всегда в своём периоде, d-электроны на уровень ниже (3 d-электроны в гостях в 4-ом периоде), f-электроны на 2 уровня ниже. Просто берём таблицу и читаем исходя из цвета элемента, у s, p- элементов номер уровня соответствует номеру периода, если доходим до d-элемента пишем уровень на один меньше, чем номер периода, в котором этот элемент находится (если элемент в 4-м периоде, следовательно, 3 d). Также поступаем и с f-элементом, только уровень указываем меньше чем номер периода на 2 значения (если элемент в 6-м периоде, следовательно, 4 f).

Второй способ : Нужно отобразить все подуровни в виде одной клеточки, и уровни расположить друг под другом симметрично подуровень под подуровнем. В каждой ячейке написать максимальное количество электронов данного подуровня. И последним этапом нанизать подуровни по диагонали (от верхнего уголка к нижнему) стрелой. Считывать подуровни сверху вниз в сторону кончика стрелы, до количества электронов нужного атома.

Если тождественные частицы имеют одинаковые квантовые числа, то их волновая функция симметрична относительно перестановки частиц. Отсюда следует, что два одинаковых фермиона, входящих в одну систему, не могут находиться в одинаковых состояниях, т.к. для фермионов волновая функция должна быть антисимметричной. Обобщая опытные данные, В. Паули сформировал принцип исключения , согласно которому системы фермионов встречаются в природе только в состояниях , описываемых антисимметричными волновыми функциями (квантово-механическая формулировка принципа Паули).

Из этого положения вытекает более простая формулировка принципа Паули, которая и была введена им в квантовую теорию (1925 г.) еще до построения квантовой механики: в системе одинаковых фермионов любые два из них не могут одновременно находиться в одном и том же состоянии . Отметим, что число одинаковых бозонов, находящихся в одном и том же состоянии, не лимитируется.

Напомним, что состояние электрона в атоме однозначно определяется набором четырех квантовых чисел :

· главного n ;

· орбитального l , обычно эти состояния обозначают 1s , 2d , 3f ;

· магнитного ();

· магнитного спинового ().

Распределение электронов в атоме происходит по принципу Паули, который может быть сформулирован для атома в простейшем виде: в одном и том же атоме не может быть более одного электрона с одинаковым набором четырех квантовых чисел: n , l , , :

Z (n , l , , ) = 0 или 1,

где Z (n , l , , ) - число электронов, находящихся в квантовом состоянии, описываемых набором четырех квантовых чисел: n , l , , . Таким образом, принцип Паули утверждает, что два электрона , связанные в одном и том же атоме различаются значениями , по крайней мере , одного квантового числа .

Максимальное число электронов, находящихся в состояниях, описываемых набором трех квантовых чисел n , l и m , и отличающихся только ориентацией спинов электронов равно:

, (8.2.1)

ибо спиновое квантовое число может принимать лишь два значения 1/2 и –1/2.

Максимальное число электронов, находящихся в состояниях, определяемых двумя квантовыми числами n и l :

. (8.2.2)

При этом вектор орбитального момента импульса электрона может принимать в пространстве (2l + 1) различных ориентаций (рис. 8.1).

Максимальное число электронов, находящихся в состояниях, определяемых значением главного квантового числа n , равно:

. (8.2.3)

Совокупность электронов в многоэлектронном атоме , имеющих одно и то же главное квантовое число n , называется электронной оболочкой или слоем .

В каждой из оболочек электроны распределяются по подоболочкам , соответствующим данному l .

Область пространства , в которой высока вероятность обнаружить электрон , называют подоболочкой или орбиталью . Вид основных типов орбиталей показан на рис. 8.1.

Поскольку орбитальное квантовое число принимает значения от 0 до , число подоболочек равно порядковому номеру n оболочки. Количество электронов в подоболочке определяется магнитным и магнитным спиновым квантовыми числами: максимальное число электронов в подоболочке с данным l равно 2(2l + 1). Обозначения оболочек, а также распределение электронов по оболочкам и подоболочкам приведено в табл. 1.

Таблица 1

Главное квантовое число n

Символ оболочки

Максимальное число электроновв оболочке

Орбитальное квантовое число l

Символ подоболочки

Максимальное число

электронов в

подоболочке