Физические параметры звука. Open Library - открытая библиотека учебной информации Частотная характеристика звука и ее виды




Цель работы

Изучить основы теории записи-воспроизведения звука, основные характеристики звука, способы преобразования звука, устройство и особенности применения аппаратуры для преобразования и усиления звука, получить навыки их практического применения.

Теоретическая справка

Звуком называется колебательное движение частиц упругой среды, распространяющееся в виде волн в газообразной, жидкой или твердой среде, которые, воздействуя на слуховой анализатор человека, вызывают слуховые ощущения. Источником звука является колеблющееся тело, например: колебания струны, вибрация камертона, движение диффузора громкоговорителя и др.

Звуковой волной называется процесс направленного распространения колебаний упругой среды от источника звука. Область пространства, в которой распространяется звуковая волна, называется звуковым полем. Звуковая волна представляет собой чередование сжатий и разряжений воздуха. В области сжатия давление воздуха превышает атмосферное, в области разряжения – меньше его. Переменная часть атмосферного давления называется звуковым давлением Р . Единица измерения звукового давления – Паскаль (Па ) (Па=Н/м 2) . Колебания, имеющие синусоидальную форму (рис. 1), называются гармоническими. Если излучающее звук тело колеблется по синусоидальному закону, то звуковое давление также изменяется по синусоидальному закону. Известно, что любое сложное колебание можно представить как сумму простых гармонических колебаний. Совокупности значений амплитуд и частот этих гармонических колебаний называются соответственно спектром амплитуд и спектром частот .

Колебательное движение частиц воздуха в звуковой волне характеризуется рядом параметров:

Период колебания (Т), наименьший промежуток времени, по истечении которого повторяются значения всех физических величин, характеризующих колебательное движение, за это время совершается одно полное колебание. Период колебания измеряется в секундах (с ).

Частота колебаний (f), число полных колебаний в единицу времени.

где: f – частота колебаний; Т – период колебаний.

Единица измерения частоты – герц (Гц ) – одно полное колебание в секунду (1 кГц = 1000 Гц ).

Рис. 1. Простое гармоническое колебание:
А – амплитуда колебания, Т – период колебания

Длина волны (λ ), расстояние, на котором укладывается один период колебания. Длина волны измеряется в метрах (м ). Длина волны и частота колебания связаны соотношением:

где с – скорость распространения звука.

Амплитуда колебаний (А) , наибольшее отклонение колеблющейся величины от состояния покоя.

Фаза колебания.

Представим себе окружность, длина которой равна расстоянию между точками А и Ε (рис. 2), или длине волны на определенной частоте. По мере «вращения» этой окружности ее радиальная линия в каждом отдельно взятом месте синусоиды будет находиться на определенном угловом расстоянии от начальной точки, что и будет значением фазы в каждой такой точке. Фазу измеряют в градусах.

Звуковая волна при столкновении с поверхностью частично отражается под тем же углом, под которым падает на эту поверхность, ее фаза при этом не изменяется. На рис. 3 проиллюстрирован фазовая зависимость отраженных волн.

Рис. 2. Синусоидальная волна: амплитуда и фаза.
Если длина окружности равна длине волны на определенной частоте (расстояние от А до Е), то по мере вращения, радиальная линия этой окружности, будет показывать угол, соответствующий значению фазы синусоиды в конкретной точке

Рис. 3. Фазовая зависимость отраженных волн.
Звуковые волны разных частот, излучаемые источником звука с одной и той же фазой, после прохождения одинакового расстояния достигают поверхности с разной фазой

Звуковая волна способна огибать препятствия, если ее длина больше размеров препятствия. Это явление называется дифракцией . Дифракция особенно заметна на низкочастотных колебаниях, имеющих значительную длину волны.

Если две звуковых волны имеют одинаковую частоту, то они взаимодействуют между собой. Процесс взаимодействия называется интерференцией. При взаимодействии синфазных (совпадающих по фазе) колебаний происходит усиление звуковой волны. В случае взаимодействия противофазных колебаний результирующая звуковая волна слабеет (рис. 4). Звуковые волны, частоты которых значительно отличаются друг от друга, не взаимодействуют между собой.

Рис. 4. Взаимодействие колебаний, находящихся в фазе (а) и в противофазе (б):
1, 2 – взаимодействующие колебания, 3 – результирующие колебания

Звуковые колебания могут быть затухающими и незатухающими. Амплитуда затухающих колебаний постепенно уменьшается. Примером затухающих колебаний может служить звук, возникающий при однократном возбуждении струны или ударе гонга. Причиной затухания колебаний струны является трение струны о воздух, а также трение между частицами колеблющейся струны. Незатухающие колебания могут существовать, если потери на трение компенсируются притоком энергии извне. Примером незатухающих колебаний являются колебания чашечки школьного звонка. Пока нажата кнопка включения, в звонке существуют незатухающие колебания. После прекращения подвода энергии к звонку колебания затухают.

Распространяясь в помещении от своего источника, звуковая волна переносит энергию, расширяется до тех пор, пока не достигнет граничных поверхностей этого помещения: стен, пола, потолка и т.д. Распространение звуковых волн сопровождается уменьшением их интенсивности. Это происходит из-за потерь звуковой энергии на преодоление трения между частицами воздуха. Кроме того, распространяясь во все стороны от источника, волна охватывает все большую область пространства, что приводит к уменьшению количества звуковой энергии на единицу площади, с каждым удвоением расстояния от сферического источника сила колебаний частиц воздуха падает на 6 дБ (в четыре раза по мощности) (рис. 5).

Рис. 5. Энергия сферической звуковой волны распределяется на все возрастающую площадь волнового фронта, благодаря чему звуковое давление теряет 6 дБ с каждым удвоением расстояния от источника

Встречая на своем пути препятствие, часть энергии звуковой волны проходит сквозь стены, часть поглощается внутри стен, а часть отражается обратно внутрь помещения. Энергия отраженной и поглощенной звуковой волны в сумме равна энергии падающей звуковой волны. В разной степени все три вида распределения звуковой энергии присутствуют практически во всех случаях
(рис. 6).

Рис. 6. Отражение и поглощение звуковой энергии

Отраженная звуковая волна, потеряв часть энергии, изменит направление и будет распространяться до тех пор, пока не достигнет других поверхностей помещения, от которых она снова отразится, потеряв при этом еще часть энергии, и т.д. Так будет продолжаться до тех пор, пока энергия звуковой волны окончательно не угаснет.

Отражение звуковой волны происходит по законам геометрической оптики. Хорошо отражают звук вещества большой плотности (бетон, металл и др.). Поглощение звуковой волны объясняется несколькими причинами. Звуковая волна расходует свою энергию на колебания самого препятствия и на колебания воздуха в порах поверхностного слоя препятствия. Отсюда следует, что пористые материалы (войлок, поролон и др.) сильно поглощают звук. В помещении, заполненном зрителями, звукопоглощение больше, чем в пустом. Степень отражения и поглощения звука веществом характеризуется коэффициентами отражения и поглощения. Эти коэффициенты могут иметь величину от нуля до единицы. Коэффициент, равный единице, указывает на идеальное отражение или поглощение звука.

Если источник звука находится в помещении, то к слушателю поступает не только прямая, но и отраженная от различных поверхностей звуковая энергия. Громкость звука в помещении зависит от мощности источника звука и количества звукопоглощающего материала. Чем больше звукопоглощающего материала размещено в помещении, тем меньше громкость звука.

После выключения источника звука за счет отражений звуковой энергии от различных поверхностей в течение некоторого времени существует звуковое поле. Процесс постепенного затухания звука в закрытых помещениях после выключения его источника называется реверберацией. Длительность реверберации характеризуется т.н. временем реверберации , т.е. временем, в течение которого интенсивность звука уменьшается в 10 6 раз, а его уровень на 60 дБ. Например, если звучание оркестра в концертном зале достигает уровня в 100 дБ при уровне фонового шума около 40 дБ, то финальные аккорды оркестра при затухании растворятся в шуме при падении их уровня примерно на 60 дБ. Время реверберации – важнейший фактор, определяющий акустическое качество помещения. Оно тем больше, чем больше объем помещения и чем меньше поглощение на ограничивающих поверхностях.

Величина времени реверберации влияет на степень разборчивости речи и качество звучания музыки. Если время реверберации излишне велико, то речь становится неразборчивой. При слишком малом времени реверберации речь разборчива, но звучание музыки становится неестественным. Оптимальное время реверберации в зависимости от объема помещения составляет около 1–2 с.

Основные характеристики звука.

Скорость звука в воздухе равняется 332,5 м/с при 0°С. При комнатной температуре (20°С) скорость звука составляет около 340 м/с. Скорость звука обозначается символом «с ».

Частота. Звуки, воспринимаемые слуховым анализатором человека, образуют диапазон звуковых частот. Принято считать, что этот диапазон ограничен частотами от 16 до 20000 Гц. Эти границы весьма условны, что связано с индивидуальными особенностями слуха людей, возрастными изменениями чувствительности слухового анализатора и методом регистрации слуховых ощущений. Человек может различить изменение частоты на 0,3% на частоте порядка 1 кГц.

Физическое понятие звука охватывает как слышимые, так и неслышимые частоты колебаний. Звуковые волны с частотой ниже 16 Гц условно называют инфразвуком, выше 20 кГц – ультразвуком. Область инфразвуковых частот снизу практически не ограничена – в природе встречаются инфразвуковые колебания с частотой в десятые и сотые доли Гц.

Звуковой диапазон условно разделен на несколько более узких диапазонов (табл. 1).

Таблица 1

Диапазон звуковых частот условно разбит на поддиапазоны

Интенсивность звука (Вт/м 2) определяется количеством энергии, переносимой волной за единицу времени через единицу площади поверхности, перпендикулярной к направлению распространения волны. Ухо человека воспринимает звук в весьма широком интервале интенсивности: от самых слабых слышимых звуков до самых громких, например создаваемых двигателем реактивного самолета.

Минимальная интенсивность звука, при которой возникает слуховое ощущение, называется порогом слухового восприятия. Он зависит от частоты звука (рис. 7). Наибольшей чувствительностью к звуку человеческое ухо обладает в диапазоне частот от 1 до 5 кГц, соответственно и порог слухового восприятия здесь имеет наименьшее значение 10 -12 Вт/м 2 . Эта величина принята за нулевой уровень слышимости. При действии шумов и др. звуковых раздражений порог слышимости для данного звука повышается (Маскировка звука – физиологический феномен, заключающийся в том, что при одновременном восприятии двух или нескольких звуков разной громкости более тихие звуки перестают быть слышимыми), причем повышенное значение сохраняется некоторое время после прекращения действия мешающего фактора, а затем постепенно возвращается к исходному уровню. У разных людей и у одних и тех же лиц в разное время порог слышимости может различаться в зависимости от возраста, физиологического состояния, тренированности.

Рис. 7. Частотная зависимость стандартного порога слышимости
синусоидального сигнала

Звуки высокой интенсивности вызывают ощущение давящей боли в ушах. Минимальная интенсивность звука, при которой возникает ощущение давящей боли в ушах (~10 Вт/м 2), называется порогом болевого ощущения. Так же как и порог слухового восприятия, порог болевого ощущения зависит от частоты звуковых колебаний. Звуки, интенсивность которых приближается к болевому порогу, оказывают вредное воздействие на слух.

Нормальное ощущение звука возможно, если интенсивность звука находится между порогом слышимости и болевым порогом.

Оценку звука удобно проводить по уровню (L ) интенсивности (звукового давления), рассчитываемому по формуле:

где J 0 – порог слухового восприятия, J – интенсивность звука (табл. 2).

Таблица 2

Характеристика звука по интенсивности и его оценка по уровню интенсивности относительно порога слухового восприятия

Характеристика звука Интенсивность (Вт/м 2) Уровень интенсивности относительно порога слухового восприятия (дБ)
Порог слухового восприятия 10 -12
Тоны сердца, генерируемые через стетоскоп 10 -11
Шепот 10 -10 –10 -9 20–30
Речевые звуки при спокойной беседе 10 -7 –10 -6 50–60
Шум, связанный с интенсивным движением транспорта 10 -5 –10 -4 70–80
Шум, создаваемый концертом рок-музыки 10 -3 –10 -2 90–100
Шум вблизи работающего двигателя самолета 0,1–1,0 110–120
Порог болевого ощущения

Наш слуховой аппарат способен к восприятию огромного динамического диапазона. Изменения в давлении воздуха, вызываемые самыми тихими из воспринимаемых на слух звуков, составляют порядка 2×10 -5 Па. В то же время звуковое давление с уровнем, приближающимся к порогу болевых ощущений для наших ушей, составляет порядка 20 Па. В итоге, соотношение между самыми тихими и самыми громкими звуками, которые может воспринимать наш слуховой аппарат, 1:1000000. Измерять такие разные по уровню сигналы в линейной шкале достаточно неудобно.

С целью сжатия такого широкого динамического диапазона было введено понятие «бел». Бел – это простой логарифм отношения двух степеней; а децибел равен одной десятой бела.

Чтобы выразить акустическое давление в децибелах, необходимо возвести давление (в Паскалях) в квадрат и разделить его на квадрат эталонного давления. Для удобства возведение в квадрат двух давлений выполняется вне логарифма (что является свойством логарифмов).

Для преобразования акустического давления в децибелы применяется формула:

где: P – интересующее нас акустическое давление; P 0 – исходное давление.

Когда в качестве эталонного давления берется 2×10 -5 Па, то звуковое давление, выраженное в децибелах, называется уровнем звукового давления (SPL – от англ. sound pressure level). Таким образом, звуковое давление, равное 3 Па , эквивалентно уровню звукового давления 103,5 дБ, следовательно:

Вышеупомянутый акустический динамический диапазон можно выразить в децибелах в виде следующих уровней звукового давления: от 0 дБ – для самых тихих звуков, 120 дБ – для звуков на уровне болевого порога, до 180 дБ – для самых громких звуков. При 140 дБ ощущается сильная боль, при 150 дБ наступает повреждение ушей.

Громкость звука, величина, характеризующая слуховое ощущение для данного звука. Громкость звука сложным образом зависит от звукового давления (или интенсивности звука ), частоты и формы колебаний. При неизменной частоте и форме колебаний громкость звука растет с увеличением звукового давления (рис. 8.). Громкость звука данной частоты оценивают, сравнивая её с громкостью простого тона частотой 1000 Гц. Уровень звукового давления (в дБ) чистого тона с частотой 1000 Гц, столь же громкого (сравнением на слух), как и измеряемый звук, называется уровнем громкости данного звука (в фонах ) (рис. 8).

Рис. 8. Кривые равной громкости – зависимость уровня звукового давления (в дБ) от частоты при заданной громкости (в фонах).

Спектр звука.

Характер восприятия звука органами слуха зависит от его спектра частот.

Шумы обладают сплошным спектром, т.е. частоты содержащихся в них простых синусоидальных колебаний образуют непрерывный ряд значений, целиком заполняющих некоторый интервал.

Музыкальные (тональные) звуки обладают линейчатым спектром частот. Частоты входящих в их состав простых гармонических колебаний образуют ряд дискретных значений.

Каждое гармоническое колебание называется тоном (простым тоном). Высота тона зависит от частоты: чем больше частота, тем выше тон. Ощущение высоты звука определяется его частотой. Плавное изменение частоты звуковых колебаний от 16 до 20000 Гц воспринимается вначале как низкочастотное гудение, затем как свист, постепенно переходящий в писк.

Основным тоном сложного музыкального звука называется тон, соответствующий наименьшей частоте в его спектре. Тоны, соответствующие остальным частотам спектра, называются обертонами. Если частоты обертонов кратны частоте f о основного тона, то обертоны называются гармоническими, причем основной тон с частотой f о называется первой гармоникой, обертон со следующей по величине частотой 2f о – второй гармоникой и т.д.

Музыкальные звуки с одним и тем же основным тоном могут различаться тембром. Тембр определяется составом обертонов – их частотами и амплитудами, а также характером нарастания амплитуд в начале звучания и их спада в конце звучания.


Похожая информация.


Лабораторная работа №5

Аудиометрия

Студент должен знать : что называется звуком, природу звука, источники звука; физические характеристики звука (частота, амплитуда, скорость, интенсивность, уровень интенсивности, давление, акустический спектр); физиологические характеристики звука (высота, громкость, тембр, минимальная и максимальная частоты колебаний, воспринимаемые данным человеком, порог слышимости, порог болевого ощущения) их связь с физическими характеристиками звука; слуховой аппарат человека, теории восприятия звука; коэффициент звукоизоляции; акустический импеданс, поглощение и отражение звука, коэффициенты отражения и проникновения звуковых волн, реверберация; физические основы звуковых методов исследования в клинике, понятие об аудиометрии.

Студент должен уметь: с помощью звукового генератора снимать зависимость порога слышимости от частоты; определять минимальную и максимальную, воспринимаемые Вами частоты колебаний, снимать аудиограмму с помощью аудиометра.

Краткая теория

Звук. Физические характеристики звука.

Звуком называются механические волны с частотой колебаний частиц упругой среды от 20 Гц до 20000 Гц, воспринимаемые человеческим ухом.



Физическими называют те характеристики звука, которые существуют объективно. Они не связаны с особенностями ощущения человеком звуковых колебаний. К физическим характеристикам звука относятся частота, амплитуда колебаний, интенсивность, уровень интенсивности, скорость распространения звуковых колебаний, звуковое давление, акустический спектр звука, коэффициенты отражения и проникновения звуковых колебаний и др. Кратко рассмотрим их.

1. Частота колебаний . Частотой звуковых колебаний называется число колебаний частиц упругой среды (в которой распространяются звуковые колебания) в единицу времени. Частота звуковых колебаний лежит в пределах 20 - 20000 Гц. Каждый конкретный человек воспринимает определенный диапазон частот (обычно несколько выше 20 Гц и ниже 20000 Гц).

2. Амплитудой звукового колебания называется наибольшее отклонение колеблющихся частиц среды (в которой распространяется звуковое колебание) от положения равновесия.

3. Интенсивностью звуковой волны (или силой звука ) называется физическая величина, численно равная отношению энергии, переносимой звуковой волной в единицу времени через единицу площади поверхности, ориентированной перпендикулярно вектору скорости звуковой волны, то есть:

где W - энергия волны, t - время переноса энергии через площадку площадью S .

Единица интенсивности: [I ] = 1Дж/(м 2 с) = 1Вт/м 2 .

Обратим внимание на то, что энергия и соответственно интенсивность звуковой волны прямо пропорциональны квадрату амплитуды «А » и частоты «ω » звуковых колебаний:

W ~ A 2 и I ~ A 2 ; W ~ ω 2 и I ~ ω 2 .

4. Скоростью звука называется скорость распространения энергии звукового колебания. Для плоской гармонической волны фазовая скорость (скорость распространения фазы колебания (фронта волны), например, максимума или минимума, т.е. сгустка или разряжения среды) равна скорости волны. Для сложного колебания (по теореме Фурье можно представить в виде суммы гармонических колебаний) вводится понятие групповой скорости – скорость распространения группы волн, с которой переносится энергия данной волной.

Скорость звука в любой среде можно найти по формуле:

где Е - модуль упругости среды (модуль Юнга), r - плотность среды.

С увеличением плотности среды (например, в 2 раза) модуль упругости Е возрастает в большей степени (более чем в 2 раза), поэтому с увеличением плотности среды скорость звука возрастает. Например, скорость звука в воде равна ≈ 1500 м/с, в стали - 8000 м/с.

Для газов формулу (2) можно преобразовать и получить в следующем виде:

(3)

где g = С Р / С V - отношение молярных или удельных теплоемкостей газа при постоянном давлении (С Р ) и при постоянном объеме (С V ).

R - универсальная газовая постоянная (R=8,31 Дж/моль·К );

Т - абсолютная температура по шкале Кельвина (T=t o C+273 );

М - молярная масса газа (для нормальной смеси газов воздуха

М=29×10 -3 кг/моль ).

Для воздуха при Т=273К и нормальном атмосферном давлении скорость звука равна υ=331,5 » 332 м/с . Следует заметить, что интенсивность волны (векторная величина) часто выражают через скорость волны :

или ,(4)

где S×l - объем, u=W/ S×l - объемная плотность энергии. Вектор в уравнении (4) называют вектором Умова .

5. Звуковым давлением называется физическая величина, численно равная отношению модуля силы давления F колеблющихся частиц среды, в которой распространяется звук, к площади S перпендикулярно ориентированной площадки по отношению к вектору силы давления.

P = F/S [P ]= 1Н/м 2 = 1Па (5)

Интенсивность звуковой волны прямо пропорциональна квадрату звукового давления:

I = Р 2 /(2r υ) , (7)

где Р - звуковое давление, r - плотность среды, υ - скорость звука в данной среде.

6.Уровень интенсивности . Уровнем интенсивности (уровнем силы звука) называется физическая величина, численно равная:

L=lg(I/I 0) , (8)

где I - интенсивность звука, I 0 =10 -12 Вт/м 2 - наименьшая интенсивность, воспринимаемая человеческим ухом на частоте 1000 Гц.

Уровень интенсивности L , исходя из формулы (8), измеряют в белах (Б). L = 1 Б , если I=10I 0 .

Максимальная интенсивность, воспринимаемая человеческим ухом I max =10 Вт/м 2 , т.е. I max / I 0 =10 13 или L max =13 Б.

Чаще уровень интенсивности измеряют в децибелах (дБ ):

L дБ =10 lg(I/I 0) , L=1 дБ при I=1,26I 0 .

Уровень силы звука можно находить через звуковое давление.

Так как I ~ Р 2 , то L(дБ) = 10lg(I/I 0) = 10 lg(P/P 0) 2 = 20 lg(P/P 0) , где P 0 = 2×10 -5 Па (при I 0 =10 -12 Вт/м 2).

7.Тоном называется звук, являющийся периодическим процессом (периодические колебания источника звука совершаются не обязательно по гармоническому закону). Если источник звука совершает гармоническое колебание x=ASinωt , то такой звук называют простым или чистым тоном. Негармоническому периодическому колебанию соответствует сложный тон, который можно по теореме Фурьне представить в виде совокупности простых тонов с частотами n о (основной тон) и 2n о , 3n о и т.д., называемых обертонами с соответствующими амплитудами.

8.Акустическим спектром звука называется совокупность гармонических колебаний с соответствующими частотами и амплитудами колебаний, на которые можно разложить данный сложный тон. Спектр сложного тона линейчатый, т.е. частоты n о, 2n о и т.д.

9. Шумом (звуковым шумом) называют звук, который представляет собой сложные, неповторяющиеся во времени колебания частиц упругой среды. Шум представляет собой сочетание беспорядочно изменяющихся сложных тонов. Акустический спектр шума состоит практически из любых частот звукового диапазона, т.е. акустический спектр шума - сплошной.

Звук может быть и в виде звукового удара. Звуковой удар - это кратковременное (обычно интенсивное) звуковое воздействие (хлопок, взрыв и т.п.).

10.Коэффициенты проникновения и отражения звуковой волны. Важной характеристикой среды, определяющей отражение и проникновение звука является волновое сопротивление (акустический импеданс) Z=r υ , где r - плотность cреды, υ - скорость звука в среде.

Если плоская волна падает, например, нормально к границе раздела двух сред, то звук частично проходит во вторую среду, а часть звука отражается. Если падает звук интенсивностью I 1 , проходит - I 2 , отражается I 3 =I 1 - I 2 , то:

1) коэффициентом проникновения звуковой волны b называется b=I 2 /I 1 ;

2) коэффициентом отражения a называется:

a= I 3 /I 1 =(I 1 -I 2)/I 1 =1-I 2 /I 1 =1-b.

Релей показал, что b =

Если υ 1 r 1 = υ 2 r 2 , то b=1 (максимальное значение), при этом a=0 , т.е. отраженная волна отсутствует.

Если Z 2 >>Z 1 или υ 2 r 2 >> υ 1 r 1 , то b » 4 υ 1 r 1 / υ 2 r 2 . Так, например, если звук падает из воздуха в воду, то b=4(440/1440000)=0,00122 или 0,122% интенсивности падающего звука проникает из воздуха в воду.

11. Понятие о реверберации . Что представляет собой реверберация? В закрытом помещении звук многократно отражается от потолка, стен, пола и т. п. с постепенно уменьшающейся интенсивностью. Поэтому после прекращения действия источника звука в течение некоторого времени слышен звук за счет многократного отражения (гул).

Реверберацией называется процесс постепенного затухания звука в закрытых помещениях после прекращения излучения источником звуковых волн. Временем реверберации называется время, в течение которого интенсивность звука при реверберации снижается в 10 6 раз. При проектировании учебных аудиторий, концертных залов и т.п. учитывают необходимость получения определенного времени (интервала времени) реверберации. Так, например, для Колонного зала Дома Союзов и Большого театра г. Москвы время реверберации для пустых помещений соответственно равно 4,55 с и 2,05 с, для заполненных – 1,70 с и 1,55 с.

Партнерский материал

Введение

Одно из пяти чувств, доступных человеку, – слух. С помощью него мы слышим окружающий мир.

У большинства из нас есть звуки, которые мы помним из детства. У кого-то это голоса родных и близких, или скрип деревянных половиц в бабушкином доме, или, может быть, это стук колес поезда по железной дороге, которая была рядом. У каждого они будут своими.

Что вы ощущаете, когда слышите или вспоминаете звуки, знакомые из детства? Радость, ностальгию, грусть, тепло? Звук способен передавать эмоции, настроение, побуждать к действию или, наоборот, успокаивать и расслаблять.

Кроме этого, звук используется в самых разных сферах человеческой жизни – в медицине, в обработке материалов, в исследованиях морских глубин и многих, многих других.

При этом, с точки зрения физики, это всего лишь природное явление – колебания упругой среды, а значит, как и у любого природного явления, у звука есть характеристики, некоторые из которых можно измерить, другие – же только услышать.

Выбирая музыкальную аппаратуру, читая обзоры и описания, мы часто сталкиваемся с большим количеством этих самых характеристик и терминов, которые авторы используют без соответствующих уточнений и пояснений. И если некоторые из них понятны и очевидны каждому, то другие для неподготовленного человека не несут в себе никакого смысла. Поэтому мы решили простым языком рассказать вам про эти непонятные и сложные, на первый взгляд, слова.

Если вспомнить своё знакомство с портативным звуком, то началось оно довольно давно, и был это вот такой кассетный плеер, подаренный мне родителями на Новый год.

Он иногда жевал пленку, и тогда приходилось распутывать ее скрепками и крепким словом. Он поглощал батарейки с аппетитом, которому позавидовал бы Робин Бобин Барабек (который скушал сорок человек), а значит, и мои, на тот момент весьма скудные сбережения обычного школьника. Но все неудобства меркли по сравнению с главным плюсом - плеер давал непередаваемое ощущение свободы и радости! Так я «заболел» звуком, который можно взять с собой.

Однако я погрешу против истины, если скажу, что с того времени всегда был неразлучен с музыкой. Были периоды, когда было не до музыки, когда в приоритете было совсем другое. Однако все это время я старался быть в курсе происходящего в мире портативного аудио, и, так сказать, держать руку на пульсе.

Когда появились смартфоны, оказалось, что эти мультимедийные комбайны умеют не только звонить и обрабатывать огромные объемы данных, но, что было намного важней для меня, хранить и воспроизводить огромное количество музыки.

Первый раз я «подсел» на «телефонный» звук, когда послушал, как звучит один из музыкальных смартфонов, в котором были использованы самые передовые на тот момент компоненты обработки звука (до этого, признаюсь, не воспринимал всерьез смартфон в качестве устройства для прослушивания музыки). Я очень хотел себе этот телефон, но не мог себе его позволить. При этом я начал следить за модельным рядом этой компании, зарекомендовавшей себя в моих глазах как производитель качественного звука, однако получалось так, что наши с ней пути постоянно расходились. С того времени я владел различной музыкальной техникой, но не перестаю искать для себя по-настоящему музыкальный смартфон, который бы мог по праву носить такое имя.

Характеристики

Среди всех характеристик звука профессионал с ходу может огорошить вас десятком определений и параметров, на которые, по его мнению, вы обязательно, ну вот прям непременно должны обратить внимание и, не дай бог, какой-то параметр не будет учтен – беда…

Скажу сразу, я не сторонник подобного подхода. Ведь обычно мы выбираем оборудование не для «международного конкурса аудиофилов», а всё же для себя любимых, для души.

Все мы разные, и все мы ценим в звуке что-то свое. Кому-то нравится звук «побасовее», кому-то, наоборот, чистый и прозрачный, для кого-то окажутся важными определенные параметры, а для кого-то – совершенно другие. Все ли параметры одинаково важны и какими они бывают? Давайте разбираться.

Случалось ли вам сталкиваться с тем, что одни наушники играют на вашем телефоне так, что приходится делать тише, а другие, наоборот, заставляют выкручивать громкость на полную и всё равно не хватает?

В портативной технике немаловажную роль в этом играет сопротивление. Зачастую именно по значению этого параметра можно понять, будет ли вам хватать громкости.

Сопротивление

Измеряется в Омах (Ом).

Георг Симон Ом - немецкий физик, вывел и подтвердил на опыте закон, выражающий связь между силой тока в цепи, напряжением и сопротивлением (известен как закон Ома ).

Данный параметр еще называют импеданс.

Значение почти всегда бывает указано на коробке либо в инструкции к аппаратуре.

Бытует мнение, что высокоомные наушники играют тихо, а низкоомные наушники - громко, и для высокоомных наушников нужен источник звука помощнее, а низкоомным хватит и смартфона. Также часто можно услышать выражение – не всякий плеер сможет «раскачать» эти наушники.

Запомните, на одном и том же источнике низкоомные наушники будут звучать громче. Несмотря на то, что с точки зрения физики это не совсем верно и есть нюансы, фактически это самый простой способ описать значение этого параметра.

Для портативной техники (портативные плееры, смартфоны) чаще всего выпускаются наушники с сопротивлением 32 Ом и ниже, однако следует иметь в виду, что для различного типа наушников низким будет считаться разное сопротивление. Так, для полноразмерных наушников импеданс до 100 Ом считается низкоомным, выше 100 Ом – высокоомным. Для наушников же внутриканального типа («затычки» или вкладыши) показатель сопротивления до 32 Ом считается низкоомным, выше 32 ОМ – высокоомным. Поэтому, выбирая наушники, обращайте внимание не только на само значение сопротивления, но и на тип наушников.

Важно : чем выше сопротивление наушников, тем чище будет звук и тем дольше будет работать плеер или смартфон в режиме воспроизведения, т.к. высокоомные наушники потребляют меньше тока, а это, в свою очередь, означает меньше искажений сигнала.

АЧХ (амплитудно-частотная характеристика)

Часто в обсуждении того или иного устройства, будь то наушники, колонки или автомобильный сабвуфер, можно услышать характеристику - «качает/не качает». Узнать, будет ли устройство, например, «качать» либо больше подойдет для любителей вокала, можно и не слушая его.

Для этого достаточно найти в описании устройства его АЧХ.

График позволяет понять, как устройство воспроизводит и другие частоты. При этом чем меньше перепадов, тем точнее аппаратура может передать исходный звук, а значит, тем ближе звук получится к оригиналу.

Если в первой трети нет ярко выраженных «горбов», то значит наушники не сильно «басовитые», а если наоборот, то они будут «качать», то же относится и к другим участкам АЧХ.

Таким образом, глядя на АЧХ, мы можем понять, какой у аппаратуры тембральный/тональный баланс. С одной стороны, можно подумать, что идеальным балансом будет считаться прямая линия, но так ли это?

Давайте попробуем разобраться подробнее. Так уж получилось, что человек для общения использует в основном средние частоты (СЧ) и, соответственно, лучше всего способен различать именно эту полосу частот. Если сделать устройство с «идеальным» балансом в виде прямой линии, боюсь, что прослушивание музыки на таком оборудовании вам не очень понравится, так как скорее всего высокие и низкие частоты будут звучать не так хорошо, как средние. Выход – искать свой баланс с учетом физиологических особенностей слуха и назначения оборудования. Для голоса один баланс, для классической музыки – другой, для танцевальной – третий.

По графику выше видно, какой баланс у данных наушников. Низкие и высокие частоты выражены больше, в отличие от средних, которых меньше, что характерно для большинства продуктов. Однако наличие «горба» на низких частотах не обязательно означает качество этих самых низких частот, так как они могут оказаться хоть и в большом количестве, но плохого качества – бубнящие, гудящие.

На итоговый результат будет влиять множество параметров, начиная от того, насколько грамотно была рассчитана геометрия корпуса, и заканчивая тем, из каких материалов сделаны элементы конструкции, и узнать это зачастую можно, только послушав наушники.

Чтобы до прослушивания примерно представлять, насколько качественным будет наш звук, после АЧХ следует обратить внимание на такой параметр, как коэффициент гармонических искажений.

Коэффициент гармонических искажений


По сути, это основной параметр, определяющий качество звучания. Вопрос только в том, что для вас качество. Например, всем известные наушники Beats by Dr. Dre на частоте 1кГц имеют коэффициент гармонических искажений почти 1,5% (выше 1.0% считается довольно посредственным результатом). При этом, как ни странно, указанные наушники популярны у потребителей.

Этот параметр желательно знать для каждой конкретной группы частот, потому что для разных частот допустимые значения разнятся. Например, для низких частот допустимым значением можно считать и 10%, а вот для высоких уже не более того самого 1%.

Не все производители любят указывать этот параметр на своих продуктах, т.к., в отличие от той же громкости, его довольно непросто соблюсти. Поэтому, если на устройстве, которое вы выбираете, есть подобный график и в нем вы видите величину не более 0,5%, следует присмотреться к этому устройству повнимательнее – это очень хороший показатель.

Мы уже знаем, как выбрать наушники/колонки, которые будут играть громче на вашем устройстве. Но как понять, насколько громко они будут играть?

Для этого существует параметр, о котором вы скорее всего не раз слышали. Его очень любят использовать ночные клубы в своих рекламных материалах, чтобы показать, насколько громко будет на вечеринке. Этот параметр измеряется в децибелах.

Чувствительность (громкость, уровень шума)

Децибел (дБ), единица измерения интенсивности звука – названа так в честь Александра Грэма Бэлла.

Александр Грэм Белл - учёный, изобретатель и бизнесмен шотландского происхождения, один из основоположников телефонии, основатель компании Bell Labs (бывш. Bell Telephone Company), определившей всё дальнейшее развитие телекоммуникационной отрасли в США.

Данный параметр неразрывно связан с сопротивлением. Достаточным принято считать уровень в 95-100 дБ (на самом деле это очень много).

Например, рекорд громкости был установлен группой Kiss 15 июля 2009 года на концерте в Оттаве. Громкость звука составила 136 дБ. По этому параметру группа Kiss обошла целый ряд знаменитых конкурентов, среди которых такие группы, как The Who, Metallica и Manowar.

При этом неофициальный рекорд принадлежит американской команде The Swans. По неподтверждённым сведениям, на нескольких концертах этой группы звук достигал громкости в 140 дБ.

Если захотите повторить или превзойти этот рекорд, помните, что громкий звук может быть расценен как нарушение общественного порядка – для Москвы, например, нормы предусматривают уровень звука, эквивалентный ночью 30 дБА, днем – 40 дБА, максимальный - 45 дБА ночью, 55 дБА днем.

И если с громкостью более-менее понятно, то вот следующий параметр понять и отследить не так-то просто, как предыдущие. Речь идет о динамическом диапазоне.

Динамический диапазон

По сути, это разница между самым громкими и тихими звуками без отсечения частот (перегрузки).

Каждый, кто хоть раз бывал в современном кинотеатре, испытывал на себе, что такое широкий динамический диапазон. Это тот самый параметр, благодаря которому вы слышите и, например, звук выстрела во всей его красе, и шорох ботинок крадущегося по крыше снайпера, который этот выстрел произвел.

Больший диапазон у вашей аппаратуры означает большее количество звуков, которое без потерь сможет передать ваше устройство.

При этом оказывается, что недостаточно передать максимально широкий динамический диапазон, нужно умудриться сделать это так, чтобы каждую частоту было не просто слышно, а слышно качественно. За это отвечает один из тех параметров, который без труда сможет оценить практически каждый при прослушивании высококачественной записи на интересующей его аппаратуре. Речь идет о детализации.

Детализация

Это умение аппаратуры разделять звук по частотам – низкие, средние, высокие (НЧ, СЧ, ВЧ).


Именно от этого параметра зависит то, насколько отчетливо будет слышно отдельные инструменты, то, насколько детальной будет музыка, не превратится ли она в просто в мешанину звуков.

Однако даже при самой лучшей детализации различная аппаратура может давать совершенно разные впечатления от прослушивания.

Это зависит от умения аппаратуры локализовать источники звука .

В обзорах музыкальной техники данный параметр нередко делят на две составляющих – стереопанорама и глубина.

Стереопанорама

В обзорах этот параметр обычно описывают как широкий или узкий. Давайте разберемся, что это такое.

Из названия понятно, что речь идет про ширину чего-либо, но чего?

Представьте, что вы сидите (стоите) на концерте вашей любимой группы или исполнителя. И перед вами на сцене в определенном порядке расставлены инструменты. Одни ближе к центру, другие дальше.


Представили? Пусть они начнут играть.

А теперь закройте глаза и попробуйте отличить, где находится тот или иной инструмент. Думаю, у вас без труда это получится.

А если инструменты поставить перед вами в одну линию друг за другом?

Доведем ситуацию до абсурда и сдвинем инструменты вплотную друг к другу. И… посадим трубача на рояль.

Как думаете, понравится вам такое звучание? Получится разобрать, где какой инструмент?

Последние два варианта чаще всего можно слышать в некачественной аппаратуре, производителю которой неважно, какой звук выдает его продукт (как показывает практика, цена при этом совсем не показатель).

Качественные наушники, колонки, музыкальные системы должны уметь выстраивать правильную стереопанораму в вашей голове. Благодаря этому, слушая музыку через хорошую аппаратуру, можно услышать, где расположен каждый инструмент.

Однако даже при умении аппаратуры создавать великолепную стереопанораму такое звучание все равно будет ощущаться неестественным, плоским из-за того, что в жизни мы воспринимаем звук не только в горизонтальной плоскости. Поэтому не менее важным оказывается такой параметр, как глубина звука.

Глубина звука

Вернемся на наш вымышленный концерт. Пианиста и скрипача отодвинем немного вглубь нашей сцены, а гитариста и саксофониста поставим чуть вперед. Вокалист же займет по праву принадлежащее ему место перед всеми инструментами.


На своей музыкальной аппаратуре вы это услышали?

Поздравляем, ваше устройство умеет создавать эффект пространственного звучания через синтез панорамы мнимых источников звука. А если проще, то у вашей аппаратуры хорошая локализация звука.

Если речь идет не о наушниках, то данный вопрос решается достаточно просто – используются несколько излучателей, расставленных вокруг, позволяющих разделить источники звука. Если же речь идет о ваших наушниках и в них это слышно, поздравляем вас второй раз, у вас весьма неплохие наушники по данному параметру.

Ваша аппаратура имеет широкий динамический диапазон, отлично сбалансирована и удачно локализует звук, но готова ли она к резким перепадам звука и стремительному нарастанию и спаду импульсов?

Как у нее с атакой?

Атака

Из названия, по идее, понятно, что это что-то стремительное и неотвратимое, как удар батареи «Катюш».

А если серьезно, вот что нам говорит об этом Википедия : Атака звука - первоначальный импульс звукоизвлечения, необходимый для образования звуков при игре на каком-либо музыкальном инструменте или при пении вокальных партий; некоторые нюансировочные характеристики различных способов звукоизвлечения, исполнительских штрихов, артикуляции и фразировки.

Если попытаться перевести это на понятный язык, то это скорость нарастания амплитуды звука до достижения заданного значения. А если еще понятней - если у вашей аппаратуры плохо с атакой, то яркие композиции с гитарами, живыми ударными и быстрыми перепадами звука будут звучать ватно и глухо, а значит, прощай хороший hard rock и иже с ним…

Кроме всего прочего, в статьях часто можно встретить такой термин, как сибилянты.

Сибилянты

Дословно – свистящие звуки. Согласные звуки, при произношении которых поток воздуха стремительно проходит между зубами.

Помните этого товарища из диснеевского мультфильма про Робина Гуда?

Вот в его речи очень, очень много сибилянтов. И если ваша аппаратура так же свистит и шипит, то увы, это не очень хороший звук.

Ремарка: кстати, сам Робин Гуд из этого мультфильма подозрительно похож на Лиса из не так давно вышедшего на экраны диснеевского же мультфильма «Зверополис». Дисней, ты повторяешься:)

Песок

Еще один субъективный параметр, который невозможно измерить. А можно только услышать.


По своей сути близок к сибилянтам, выражается в том, что на большой громкости, при перегрузке, высокие частоты начинают распадаться на части и появляется эффект сыплющегося песка, а иногда и высокочастотное дребезжание. Звук становится каким-то шершавым и при этом рыхлым. Чем раньше это происходит, тем хуже, и наоборот.

Попробуйте дома, с высоты в несколько сантиметров, медленно высыпать горсть сахарного песка на металлическую крышку от кастрюли. Услышали? Вот, это оно.

Ищите звук, в котором нет песка.

Частотный диапазон

Одним из последних непосредственных параметров звука, который хотелось бы рассмотреть, является частотный диапазон.

Измеряется в герцах (Гц).

Генрих Рудольф Герц, основное достижение - экспериментальное подтверждение электромагнитной теории света Джеймса Максвелла. Герц доказал существование электромагнитных волн. Именем Герца с 1933 года называется единица измерения частоты, которая входит в международную метрическую систему единиц СИ.

Это тот параметр, который вы с вероятностью в 99% найдете в описании практически любой музыкальной техники. Почему же я оставил его на потом?

Начать следует с того, что человек слышит звуки, находящиеся в определенном частотном диапазоне, а именно от 20 Гц до 20000 Гц. Всё, что выше этого значения, – ультразвук. Все, что ниже, – инфразвук. Они недоступны человеческому слуху, зато доступны братьям нашим меньшим. Это знакомо нам из школьных курсов физики и биологии.


На деле же у большинства людей реальный слышимый диапазон куда скромнее, причем, у женщин слышимый диапазон сдвинут вверх относительно мужского, поэтому мужчины лучше различают низкие, а женщины высокие частоты.

Зачем же тогда производители на своих продуктах указывают диапазон, выходящий за рамки нашего восприятия? Может быть, это только маркетинг?

И да, и нет. Человек не только слышит, но и чувствует, ощущает звук.

Доводилось ли вам стоять вблизи играющей большой колонки или сабвуфера? Вспомните свои ощущения. Звук не только слышен, он еще и ощущается всем телом, имеет давление, силу. Поэтому чем больший диапазон указан на вашей аппаратуре, тем лучше.


Однако всё же не стоит придавать этому показателю слишком большое значение - редко встретишь аппаратуру, частотный диапазон которой уже границ человеческого восприятия.

Дополнительные характеристики

Все вышеперечисленные характеристики напрямую относятся к качеству воспроизводимого звука. Однако на итоговый результат, а значит, и на удовольствие от просмотра/прослушивания, влияет и то, какого качества у вас исходный файл и какой источник звука вы используете.

Форматы

Эта информация у всех на слуху, и большинство и так об этом знает, но на всякий случай напомним.

Всего выделяют три основных группы звуковых форматов файлов:

  • аудиоформаты без сжатия, такие как WAV, AIFF
  • аудиоформаты со сжатием без потерь (APE, FLAC)
  • аудиоформаты со сжатием с потерями (MP3, Ogg)

Более подробно об этом рекомендуем прочесть, обратившись к Википедии .

Мы же для себя отметим, что использовать форматы APE, FLAC имеет смысл, если у вас аппаратура профессионального либо полупрофессионального уровня. В остальных же случаях обычно хватает возможностей формата MP3, пережатого из качественного источника с битрейтом от 256 кбит/сек (чем выше битрейт, тем меньше было потерь при сжатии звука). Однако это скорее дело вкуса, слуха и индивидуальных предпочтений.

Источник

Не менее важным является и качество источника звука.

Раз уж речь изначально шла про музыку на смартфонах, давайте рассмотрим именно этот вариант.

Еще не так давно звук был аналоговым. Помните бобины, кассеты? Это аналоговый звук.


И в ваших наушниках вы слышите аналоговый звук, который прошел две стадии преобразования. Сначала его из аналогового преобразовали в цифровой, а затем перед подачей на наушник/колонку обратно преобразовали в аналоговый. И от того, какого качества было это преобразование, в итоге будет зависеть результат – качество звучания.

В смартфоне за этот процесс отвечает ЦАП – цифро-аналоговый преобразователь.

Чем качественнее ЦАП, тем качественнее будет звук, который вы услышите. И наоборот. Если ЦАП в устройстве посредственный, то какими бы ни были ваши колонки или наушники, о высоком качестве звука можно забыть.

Все смартфоны можно разделить на две основных категории:

  1. Смартфоны с выделенным ЦАП
  2. Смартфоны со встроенным ЦАП

На данный момент производством ЦАП для смартфонов занимается большое количество производителей. Что выбрать, вы можете решить, воспользовавшись поиском и прочитав описание того или иного устройства. Однако не забывайте, что и среди смартфонов со встроенным ЦАП, и среди смартфонов с выделенным ЦАП есть образцы с очень хорошим звуком и не очень, потому как немаловажную роль играют оптимизация операционной системы, версия прошивки и то приложение, через которое вы слушаете музыку. Кроме этого, существуют программные аудиомоды ядра, позволяющие улучшить итоговое качество звучания. И если инженеры и программисты в компании делают одно дело и делают его грамотно, то результат оказывается заслуживающим внимания.

При этом важно знать, что при прямом сравнении двух устройств, одно из которых оснащено качественным встроенным ЦАП, а другое – хорошим выделенным ЦАП, выигрыш неизменно будет за последним.

Заключение

Звук – неисчерпаемая тема.

Надеюсь, что благодаря этому материалу многое в музыкальных обзорах и текстах стало для вас понятнее и проще, а незнакомая ранее терминология обрела дополнительный смысл и значение, ведь всё легко, когда знаешь.

Обе части нашего ликбеза про звук написаны при поддержке компании Meizu. Вместо обычного расхваливания аппаратов мы решили сделать для вас полезные и интересные статьи и обратить внимание на важность источника воспроизведения при получении качественного звука.

Зачем это нужно для Meizu? На днях начался предзаказ нового музыкального флагмана Meizu Pro 6 Plus , поэтому компании важно, чтобы обычный пользователь знал о нюансах качественного звука и ключевой роли источника воспроизведения. Кстати, оформив оплаченный предзаказ до конца года, вы получите в подарок к смартфону гарнитуру Meizu HD50.

А еще мы подготовили для вас музыкальную викторину с развернутыми комментариями по каждому вопросу, рекомендуем попробовать свои силы:

Звуки приносят человеку жизненно важную информацию - с их помощью мы общаемся, слушаем музыку, узнаем по голосу знакомых людей. Мир окружающих нас звуков разнообразен и сложен, однако мы достаточно легко ориентируемся в нем и можем безошибочно отличить пение птиц от шума городской улицы.

  • Звуковая волна - упругая продольная волна, вызывающая у человека слуховые ощущения. Колебания источника звука (например, струн или голосовых связок) вызывают появление продольной волны. Достигнув человеческого уха, звуковые волны заставляют барабанную перепонку совершать вынужденные колебания с частотой, равной частоте колебаний источника. Свыше 20 тыс. нитевидных рецепторных окончаний, находящихся во внутреннем ухе, преобразуют механические колебания в электрические импульсы. При передаче импульсов по нервным волокнам в головной мозг у человека возникают определенные слуховые ощущения.

Таким образом, в процессе распространения звуковой волны меняются такие характеристики среды, как давление и плотность.

Звуковые волны, воспринимаемые органами слуха, вызывают звуковые ощущения.

Звуковые волны классифицируются по частоте следующим образом:

  • инфразвук (ν < 16 Гц);
  • слышимый человеком звук (16 Гц < ν < 20000 Гц);
  • ультразвук (ν > 20000 Гц);
  • гиперзвук (10 9 Гц < ν < 10 12 -10 13 Гц).

Человек не слышит инфразвук, но каким-то образом эти звуки воспринимает. Так как например, опыты показали, что инфразвук вызывает неприятные тревожные ощущения.

Многие животные могут воспринимать ульразвуковые частоты. Например, собаки могут слышать звуки до 50000 Гц, а летучие мыши - до 100000 Гц. Инфразвук, распространяясь в воде на сотни километров, помогает китам и многим другим морским животным ориентироваться в толще воды.

Физические характеристики звука

Одной из важнейших характеристик звуковых волн является спектр.

  • Спектром называется набор различных частот, образующих данный звуковой сигнал. Спектр может быть сплошным или дискретным.

Сплошной спектр означает, что в данном наборе присутствуют волны, частоты которых заполняют весь заданный спектральный диапазон.

Дискретный спектр означает наличие конечного числа волн с определенными частотами и амплитудами, которые образуют рассматриваемый сигнал.

По типу спектра звуки разделяются на шумы и музыкальные тона.

  • Шум - совокупность множества разнообразных кратковременных звуков (хруст, шелест, шорох, стук и т.п.) - представляет собой наложение большого числа колебаний с близкими амплитудами, но различными частотами (имеет сплошной спектр). С развитием промышленности появилась новая проблема - борьба с шумом. Возникло даже новое понятие «шумовое загрязнение» среды обитания. Шум, особенно большой интенсивности, не просто надоедает и утомляет - он может и серьезно подорвать здоровье.
  • Музыкальный тон создается периодическими колебаниями звучащего тела (камертон, струна) и представляет собой гармоническое колебание одной частоты.

С помощью музыкальных тонов создается музыкальная азбука - ноты (до, ре, ми, фа, соль, ля, си), которые позволяют воспроизводить одну и ту же мелодию на различных музыкальных инструментах.

  • Музыкальный звук (созвучие) - результат наложения нескольких одновременно звучащих музыкальных тонов, из которых можно выделить основной тон, соответствующий наименьшей частоте. Основной тон называется также первой гармоникой. Все остальные тоны называются обертонами. Обертоны называются гармоническими, если частоты обертонов кратны частоте основного тона. Таким образом, музыкальный звук имеет дискретный спектр.

Любой звук, помимо частоты, характеризуется интенсивностью. Так реактивный самолет может создать звук интенсивностью порядка 10 3 Вт/м 2 , мощные усилители на концерте в закрытом помещении - до 1 Вт/м 2 , поезд метро - около 10 –2 Вт/м 2 .

Чтобы вызвать звуковые ощущения, волна должна обладать некоторой минимальной интенсивностью, называемой порогом слышимости. Интенсивность звуковых волн, при которой возникает ощущение давящей боли, называют порогом болевого ощущения или болевым порогом.

Интенсивность звука, улавливаемая ухом человека, лежит в широких пределах: от 10 –12 Вт/м 2 (порог слышимости) до 1 Вт/м 2 (порог болевого ощущения). Человек может слышать и более интенсивные звуки, но при этом он будет испытывать боль.

Уровень интенсивности звука L определяют по шкале, единицей которой является бел (Б) или, что гораздо чаще, децибел (дБ) (одна десятая бела). 1 Б - самый слабый звук, который воспринимает наше ухо. Эта единица названа в честь изобретателя телефона Александра Белла. Измерение уровня интенсивности в децибелах проще и поэтому принято в физике и технике.

Уровень интенсивности L любого звука в децибелах вычисляется через интенсивность звука по формуле

\(L=10\cdot lg\left(\frac{I}{I_0}\right),\)

где I - интенсивность данного звука, I 0 - интенсивность, соответствующая порогу слышимости.

В таблице 1 приведен уровень интенсивности различных звуков. Тем, кто при работе подвергается воздействию шума свыше 100 дБ, следует пользоваться наушниками.

Таблица 1

Уровень интенсивности (L ) звуков

Физиологические характеристики звука

Физическим характеристикам звука соответствуют определенные физиологические (субъективные) характеристики, связанные с восприятием его конкретным человеком. Это обусловлено тем, что восприятие звука - процесс не только физический, но и физиологический. Человеческое ухо воспринимает звуковые колебания определенных частот и интенсивностей (это объективные, не зависящие от человека характеристики звука) по-разному, в зависимости от «характеристик приемника» (здесь влияют субъективные индивидуальные черты каждого человека).

Основными субъективными характеристиками звука можно считать громкость, высоту и тембр.

  • Громкость (степень слышимости звука) определяется, как интенсивностью звука (амплитудой колебаний в звуковой волне), так и различной чувствительностью человеческого уха на разных частотах. Наибольшей чувствительностью человеческое ухо обладает в диапазоне частот от 1000 до 5000 Гц. При увеличении интенсивности в 10 раз уровень громкости увеличивается на 10 дБ. Вследствие этого, звук в 50 дБ оказывается в 100 раз интенсивнее звука в 30 дБ.
  • Высота звука определяется частотой звуковых колебаний, обладающих наибольшей интенсивностью в спектре.
  • Тембр (оттенок звука) зависит от того, сколько обертонов присоединяются к основному тону и какова их интенсивность и частота. По тембру мы легко отличаем звуки скрипки и рояля, флейты и гитары, голоса людей (табл. 2).

Таблица 2

Частота ν колебаний различных источников звука

Источник звука ν, Гц Источник звука ν, Гц
Мужской голос : 100 - 7000 Контрабас 60 - 8 000
бас 80 - 350 Виолончель 70 - 8 000
баритон 100 - 400 Труба 60 - 6000
тенор 130 - 500 Саксафон 80 - 8000
Женский голос : 200 - 9000 Рояль 90 - 9000
контральто 170 - 780 Музыкальные тона :
меццо-сопрано 200 - 900 Нота до 261,63
сопрано 250 - 1000 Нота ре 293,66
колоратурное сопрано 260 - 1400 Нота ми 329,63
Орган 22 - 16000 Нота фа 349,23
Флейта 260 - 15000 Нота соль 392,0
Скрипка 260 - 15000 Нота ля 440,0
Арфа 30 - 15000 Нота си 493,88
Барабан 90 - 14000

Скорость звука

Скорость звука зависит от упругих свойств, плотности и температуры среды. Чем больше упругие силы, тем быстрее передаются колебания частиц соседним частицам и тем быстрее распространяется волна. Поэтому скорость звука в газах меньше, чем в жидкостях, а в жидкостях, как правило, меньше чем в твердых телах (табл. 3). В вакууме звуковые волны, как и любые механические волны, не распространяются, так как там нет упругих взаимодействий между частицами среды.

Таблица 3.

Скорость звука в различных средах

Скорость звука в идеальных газах с ростом температуры растет пропорционально \(\sqrt{T},\) где T - абсолютная температура. В воздухе скорость звука υ = 331 м/с при температуре t = 0 °C и υ = 343 м/с при температуре t = 20 °C. В жидкостях и металлах скорость звука, как правило, уменьшается с ростом температуры (исключение - вода).

Впервые скорость распространения звука в воздухе была определена в 1640 г. французским физиком Мареном Мерсенном. Он измерял промежуток времени между моментами появления вспышки и звука при ружейном выстреле. Мерсенн определил, что скорость звука в воздухе равна 414 м/с.

Применение звука

Инфразвук в технике пока применять не научились. Зато широкое применение получил ультразвук.

  • Способ ориентации или исследования окружающих объектов, основанный на излучении ультразвуковых импульсов с последующим восприятием отраженных импульсов (эха) от различных объектов, называется эхолокацией , а соответствующие приборы - эхолокаторами .

Хорошо известны животные, обладающие способностью к эхолокации - летучие мыши и дельфины. По своему совершенству эхолокаторы этих животных не уступают, а во многом и превосходят (по надежности, точности, энергетической экономичности) современные эхолокаторы, созданные человеком.

Эхолокаторы, используемые под водой, называются гидролокаторами или сонарами (название sonar образован из начальных букв трех английских слов: sound - звук; navigation - навигация; range - дальность). Сонары незаменимы при исследованиях морского дна (его профиля, глубины), для обнаружения и исследования различных объектов, движущихся глубоко под водой. При их помощи могут быть легко обнаружены как отдельные большие предметы или животные, так и стаи небольших рыб или моллюсков.

Волны ультразвуковых частот широко используются в медицине в диагностических целях. УЗИ-сканеры позволяют исследовать внутренние органы человека. Ультразвуковое излучение, в отличие от рентгеновского, безвредно для человека.

Литература

  1. Жилко, В.В. Физика: учеб. пособие для 11 класса общеобразоват. шк. с рус. яз. обучения / В.В. Жилко, Л.Г. Маркович. - Минск: Нар. Асвета, 2009. - С. 57-58.
  2. Касьянов В.А. Физика. 10 кл.: Учебн. для общеобразоват. учреждений. - М.: Дрофа, 2004. - С. 338-344.
  3. Мякишев Г.Я., Синяков А.З. Физика: Колебания и волны. 11 кл.: Учеб. для углубленного изучения физики. - М.: Дрофа, 2002. - С. 184-198.