Методические указания. Чистой культурой микробов называют популяцию микроорганизмов одного вида, полученную из изолированной микробной колонии. Колонии по методу дригальского Методы получения изолированных колоний аэробов




Чистой культурой микробов называют популяцию микроорганизмов одного вида, полученную из изолированной микробной колонии. Под микробной колонией подразумевает­ся потомство бактерий, возникающее в результате размно­жения одной микробной клетки.

Выделение чистой культуры микробов является обяза­тельным этапом всякого бактериологического исследования. Чистая культура необходима для изучения морфологических культуральных, биохимических и антигенных свойств, по со­вокупности которых определяется видовая принадлежность исследуемого микроорганизма.

Для выделения чистых культур микробов из материалов, содержащих обильную смешанную микрофлору, предложено много различных методов. Наибольшее распространение по­лучил метод механического разъединения микроорганизмов, находящихся в исследуемом материале, с целью получения изолированных колоний на поверхности или в глубине пита­тельной среды.

Очень широко применяются элективные питательные сре­ды, стимулирующие развитие тех микроорганизмов, чистую культуру которых предполагается выделить.

При выделении чистой культуры патогенных микробов из патологического материала, загрязненного посторонней мик­рофлорой, прибегают иногда к заражению лабораторных жи­вотных.

При посеве в жидкую питательную среду петлю с находя­щимся на ней материалом погружают в среду. Если матери­ал вязкий и с петли не снимается, его растирают на стенке сосуда, а затем смывают жидкой средой.

При посеве на скошенный мясо-пептонный агар пробирку берут в левую руку между I и II пальцами, чтобы основание пробирки находилось на поверхности кисти руки и посев осуществлялся под контролем глаза. Пробку из пробирки вынимают правой рукой V и IV пальцами, не прикасаясь к той части пробки, которая входит внутрь пробирки. Остальные 3 пальца правой руки остаются свободными для
взятия бактериальной петли, посредством которой произво­дится посев. Петлю держат, как писчее перо. После вынима­ния пробки пробирку с питательной средой держат в наклонном положении во избежание попадания в нее посторонних микроорганизмов из воздуха.

Петлю с находящимся на ней пересеваемым материалом вводят в пробирку до дна, опускают плашмя на поверхность питательной среды и скользящими движениями наносят штрих снизу вверх, от одной стенки пробирки к другой.

При посеве на поверхность плотной питательной среды в чашки Петри чашку держат в левой руке. Дно ее с одной стороны придерживают I и II пальцами, а с другой -IV и V пальцами. Крышку, приоткрытую настолько, чтобы в образовавшуюся щель свободно проходили петля или шпатель, фиксируют I и III или I и II пальцами. Небольшое количество исследуемого материала втирают бактериальной петлей в поверхность питательной среды у края чашки. За­тем петлю прожигают, чтобы уничтожить избыток находяще­гося на ней материала. Линию посева начинают с того ме­ста, в котором находится материал. Бактериальную петлю кладут плашмя на питательную среду, чтобы не поцарапать ее поверхности, и проводят штрихи по всей среде. Нужно стараться, чтобы штрихи, наносимые петлей, располагались как можно ближе друг к другу, так как это удлиняет общую линию посева и дает возможность получить изолированные колонии микробов. Для равномерного распределения засеваемого материала по поверхности плотной питательной среды можно пользо­ваться вместо петли тампоном или шпателем.

Посев уколом в столбик питательной среды производят в пробирку со средой, застывшей в виде столбика. Пробирку берут в левую руку, как обычно, и в центре столбика до дна пробирки вкалывают петлю с находящимся на ней материалом.

Для изуче­ния свойств колоний микробы культивируют на плотных пи­тательных средах в чашках Петри. При посеве материала стараются получить изолированный рост колоний. Чашки с посевом просматривают сначала невооруженным глазом или через лупу, затем помещают их на столик микроскопа вверх дном и просматривают колонии в проходящем свете с объ­ективом малого увеличения и с суженной диафрагмой.

Колонии характеризуют по величине, форме, контуру края, рельефу, поверхности, цвету, структуре и консистенции.

Величина колонии определяется ее диаметром, В за­висимости от диаметра различают колонии точечные (диа­метр меньше 1 мм), мелкие (диаметр 1-2 мм), средние (диаметр 2-4 мм) и крупные (диаметр 4-6 мм и более).

Форма колонии бывает правильная - круглая, непра­вильная - амебовидная, ризоидная - корневидная, напоми­нающая переплетающиеся корни деревьев.

Характер контура края определяют при рассмотре­нии колонии под лупой или микроскопом с малым увеличе­нием. Различают ровные края в виде четко выраженной ли­нии и неровные (фестончатый, волнистый, бахромчатый).

Рельеф колонии характеризуется приподнятостью ее над поверхностью питательной среды и контуром формы в вертикальном разрезе. Определяется рельеф колонии нево­оруженным глазом или с лупой при рассматривании сверху и сбоку. Различают (каплеобразные, куполообразные, конусообразные, колонии с вдавленным центром, плоские).

Поверхность коло­ний бывает матовая или блестящая с глянцем, сухая или влажная, гладкая или шероховатая. Гладкие колонии обозна­чают буквой S (smooth), шероховатые - буквой R (rough), что означает соответственно «гладкий» и «шероховатый». Переход S-форм в R-формы наблюдается при диссо­циации. Явление диссоциации у патогенных микробов на­блюдается под действием антибиотико- и химиотерапии, фак­торов специфического иммунитета, формирующихся в течение инфекционного процесса, а также при попадании микроба во внешнюю среду.

Цвет колонии определяется пигментом, который проду­цирует культура микробов. Преобладающее большинство патогенных бактерий пигмента не образует, вследствие чего колонии их бесцветны или молочно-мутного цвета, похожи на опал. В проходящем свете такие колонии в большей или меньшей степени прозрачны. Пигментообразующие виды мик­робов дают колонии различных цветов: кремовые, желтые, золотисто-оранжевые, синие, красные, сиреневые, черные идр.

Структура колоний определяется в проходящем све­те при слабом увеличении микроскопа.

По характеру структуры различают следующие виды ко­лоний:

1) гиалиновые - бесцветные, прозрачные, без видимой определенной структуры;

2) зернистые;

3) нитевидные или волокнистые, характеризующиеся на­личием длинных, густо переплетающихся нитей в толще колонии.

Консистенцию колонии исследуют посредством прикосновения или взятия из нее части материала бактериальной петлей.

По характеру консистенции колонии бывают:

1) пастообразные, легко снимающиеся и размывающиеся по поверхности питательной среды наподобие сливочного масла;

2) вязкие или слизистые, прилипающие и тянущиеся за петлей;

3) волокнистые или кожистые, плотные, снимающиеся с поверхности питательной среды в виде упругой пленки, соот­ветствующей величине и форме колонии;

4) хрупкие, сухие, рассыпающиеся при прикосновении петли.

На жидких питательных средах характер роста мик­робов менее разнообразен, чем на плотных питательных средах. Однако и здесь выявлены следующие формы роста бак­терий.

Питательные среды для культивирования бактерий

Для выделения чистых культур патогенных бактерий применяют оптимальные для их роста питательные среды с фиксированным рН. Большинство бактерий способно расти на различных питательных средах; исключение составляют хламидии и риккетсии, не растущие in vitro вне клеточных культур. Используемая среда должна содержать

Вещества, утилизируемые бактериями для различных биосинтетических процессов.

Универсальные источники азота и углерода -- бел- ковые гидролизаты (содержат полный набор аминокис- лот), пептиды и пептоны. Универсальные источники витаминов и микроэлементов -- экстракты белков жи- вотного или растительного происхождения и белковые гидролизаты.

рН среды. В некоторых случаях жизнедеятельность бактерий сопровождается сдвигом рН в кислую или щелочную сторону, что требует внесения в среды раз-- личных буферных систем (обычно применяют фосфат-- ный буфер). Сбалансированные среды отличают высо-- кая буферность и стабильный оптимум рН. Важно так- же создание оптимальной концентрации О 2 и СО 2 .

Посев и культивирование

При достаточном содержании патогенных бактерий в образце проводят посев на плотные пита-тельные среды (для получения изолированных колоний). Если в исследуемом материале бактерий мало, то посев проводят на жидкие среды обогащения. На практике выделение относительно неприхотливых бактерий обычно проводят на простых средах (например, на КА, агаре Плоскирева, тиогликолевом бульоне, агаре Сабуро и т.д.). Для выделения прихотливых видов в среды вносят питательные вещества (кровь, сыворотку, дрожжевой экстракт и др.), а такжепогло-тители токсических метаболитов, образующихся при росте бактерий (например, дре-весный уголь). Для посевов применяют микробиологические петли, реже иглы и шпатели.

Получение изолированных колоний

Для получения изолированных колоний на практике наиболее часто используют модифика-цию рассева по Дригальски. Для этого материал наносят на поверхность плотной питательной среды ближе к краю и делают «бляшку». Затем из неё материал распределяют по четырём квадратам, проводя петлёй штрихи, как показано на рис. 1-12, обжигая петлю после засева каждого квадрата. Подобный метод позволяет получить изолированные колонии и изучать их. Исключение составляет техника посева при бактериологическом исследовании мочи (техника штрихового засева показана на рис.1-13). Указанные методы пригодны для посева аэробных и факультативно анаэробных бактерий, а также нестрогих анаэробов.

Температура культивирования

Патогенные бактерии вариабельны в отношении температур, оптимальных для их роста, но большинство из них неплохо развивается при 35-37 °С. Исключение составляют некоторые атипичные микобактерии, возбудитель чумы, листерии и лептоспиры (температурный оптимум 20-30 °С), а также Campylobacter jejuni (температурный оптимум 42 °С).

Бактерии чётко разделяют по отношению к содержанию кислорода в атмосфере культиви-рования.

Аэробы. Посевы аэробных бактерий культивируют в простых термостатах. Некоторые факуль-тативно анаэробные виды также можно культивировать при атмосферном воздухе, но более оптимально помещение посевов в термостаты с дозированной подачей кислорода. На практи-ке их чаще помещают в эксикаторы, куда вносят горящую свечу; после её выгорания в атмо-сфере снижается содержание кислорода и повышается содержание СО 2 .

Анаэробы. Посевы анаэробных бактерий в жидких средах заливают вазелиновым или другим маслом. При использовании плотных сред посевы культивируют в специальных устройствах -- анаэростатах (откуда откачивают воздух) либо заливают посевы тонким слоем агара. Анаэ-робные условия можно создать химическим путём, поместив посевы в эксикаторы, на дно которых заливают щелочной раствор пирогаллола, поглощающего кислород. Также можно использовать методы Фортнера, Цейсслера и Вейнберга.

Метод Фортнера. Посевы проводят на чашку Петри с толстым слоем среды, разделённым пополам узкой канавкой, вырезанной в агаре. На одну половину засевают культуру аэроб-ных бактерий, на другую -- анаэробных. Края чашки заливают парафином и инкубируют в термостате. Первоначально наблюдают рост аэробов, а затем (после поглощения кислоро-да) -- рост анаэробов.

Метод Цейсслера используют для выделения чистых культур спорообразующих анаэробов. Для этого проводят посев на среду Китта-Тароцци, прогревают 15 мин при 80 °С (для унич-тожения вегетативных форм), заливают вазелиновым маслом и инкубируют 24 ч. Затем про-водят посев на сахарно-кровяной агар для получения чистых культур. После 24-часового культивирования подозрительные колонии изучают и отсевают на среду Китта-Тароцци (с последующим контролем чистоты выделенной культуры).

Метод Вейнберга используют для получения чистых культур строгих анаэробов. Культуры, выращенные на среде Китта-Тароцци, вносят в сахарный бульон. Затем пастеровской пи-петкой с запаянным концом материал переносят в узкие пробирки (трубки Виньяля) с сахарным МПА, погружая пастерку до дна пробирки. Засеянные пробирки быстро охлаждают холодной водой, что позволяет зафиксировать отдельные бактериальные клетки в толще затвердевшего агара. Пробирки инкубируют, и изучают выросшие колонии. При обнаружении подозрительной колонии на её месте делают распил, колонию быстро отбирают и засеивают на среду Китта-Тароцци (с последующим контролем чистоты выделенной культуры).

Методы культивирования

При выращивании бактерий применяют стационарный способ, способ глубинного культивирования с аэрацией и метод проточных питательных сред. В соответствии со способами выращивания бактериальные культуры разделяют на периодические (при стационарном и глубинном культивировании) инепрерывные (при проточном культивировании).

Стационарный способ -- наиболее часто используемый на практике. Состав сред остаётся постоянным, с ними не проводят никаких дополнительных манипуляций.

Способ глубинного культивирования применяют при промышленном выращивании бактериальной биомассы, для чего используют специальные котлы-реакторы. Они снабжены систе-мами поддержания температуры, подачи в бульон различных питательных веществ, переме-шивания биомассы и постоянной подачи кислорода. Создание аэробных условий по всей толще среды способствует протеканию энергетических процессов по аэробному пути, что способствует максимальной утилизации энергетического потенциала глюкозы и, следователь-но, максимальному выходу биомассы.

Метод проточных сред (промышленный способ культивирования) позволяет постоянно под-держивать бактериальную культуру в экспоненциальной фазе роста, что достигают постоянным внесением питательных веществ и удалением определённого числа бактериальных клеток. Пре-бывание бактерий в экспоненциальной стадии роста обеспечивает максимальный выход различ-ных БАВ (витамины, антибиотики и др.).

Первичная идентификация бактерий

В большинстве случаев изучение особенностей роста для первичной идентификации возбу-дителей проводят на колониях, выросших в течение 18-24 ч. Характер роста бактерий на раз-личных средах может дать много полезной информации. На практике используют сравнительно небольшой набор критериев. В жидких средах обычно учитывают характер поверхностного (образование плёнки) или придонного роста (вид осадка) и общее помутнение среды. На твёр-дых средах бактерии формируют колонии --изолированные структуры, образующиеся в результате роста и накопления бактерий. Колонии возникают как следствие роста и размноже-ния одной или нескольких клеток. Таким образом,пересев из колонии в дальнейшем даёт возможность оперировать с чистой культурой возбудителя. Рост бактерий на плотных сре-дах имеет больше характерных особенностей.

Размеры и форма колоний

Важные признаки колоний -- их размеры и форма. Колонии могут быть большими или мелкими. Величина колоний -- признак, позволяющий различать различные виды, роды и даже типы бактерий.

В большинстве случаев ко-лонии грамположительных бактерий мель-че колоний грамотрицательных бактерий. Колонии бактерий могут быть плоскими, приподнятыми, выпуклыми, иметь вдавлен-ный или приподнятый центр. Другой важный признак --форма краёв колоний. При изучении фор-мы колоний учитывают характер её поверх-ности: матовый, блестящий, гладкий или ше-роховатый. Края колоний могут быть ров-ными, волнистыми, дольчатыми (глубоко изрезанными), зубчатыми, эрозированными, бахромчатыми и т.д. Размеры и формы ко-лоний часто могут изменяться. Подобные изменения известны какдиссоциации. Наиболее часто обнаруживают S- и R-ducсоциации. S-колонии круглые, гладкие и выпуклые, с ровными краями и блестящей поверхностью. R-колонии -- неправильной формы, шероховатые, с зубчатыми краями.

Цвет колоний

При просмотре посевов также обращают внимание на цвет колоний. Чаще они бесцветные, белые, голубоватые, жёлтые или бежевые; реже -- красные, фиолетовые, зелёные или чёрные. Иногда колонии ирризируют, то есть переливаются всеми цветами радуги [от греч. iris, радуга]. Окрашивание возникает в результате способности бактерий к пигментообразованию. На специ-альных дифференцирующих средах, включающих специальные ингредиенты или красители, ко-лонии могут приобретать разнообразную окраску (чёрную, синюю и др.) за счёт включения красителей либо их восстановления из бесцветной формы. В данном случае их окраска не связана с образованием каких-либо пигментов.

Запах

Запах -- менее важный признак колоний, поскольку вызываемые им ассоциации носят субъективный характер. В частности, культуры синегнойной палочки имеют запах карамели, культуры листерий -- молочной сыворотки, протеев -- гнилостный запах, нокардий -- свежевскопанной земли.

Исследование бактерий имеет большое практическое значение для человека. На сегодняшний день открыто большое количество прокариот, которые отличаются друг от друга по патогенности, области распространения, форме, размерам, количеству жгутиков и другим параметрам. Чтобы детально изучить данный штамм, применяется бактериологический метод исследования.

Какие существуют методы клеток?

Чтобы определить, являются ли бактерии патогенными, проводят исследование культуры различными способами. Среди них:

1. Бактериоскопический метод.

2. Бактериологический метод.

3. Биологический метод.

Бактериоскопический и бактериологический основаны непосредственно на работе с клетками прокариот, когда биологический анализ требуется для изучения влияния таких клеток на живой организм подопытных животных. По степени проявления тех или иных признаков заболевания ученый может сделать вывод о наличии или отсутствии патогенных бактерий в пробе, а также естественно их размножить в организме животного для получения их культуры и использования в других работах.

Бактериологический метод исследования отличается от бактериоскопического. В первом для анализа используется специально подготовленная культура живых прокариот, когда во втором проводится работа с мертвыми или живыми клетками на предметном стекле.

Этапы бактериологического метода исследования. Микробиология

Принцип изучения свойств бактериальной культуры может пригодиться как для ученых-микробиологов, которые поставили цель исследовать прокариотические клетки, так и для лаборантов, задача которых заключается в установлении патогенности или непатогенности бактерий, а затем диагноза пациента.

Методика изучения бактерий делится на три этапа:

1. Выделение бактерий из первоначальной пробы.

2. Высевание бактерий и выращивание изучение ее свойств.

Первый этап

Проба, или мазок, берется со свободной поверхности среды или у пациента. Таким образом мы получаем «коктейль» из множества видов бактерий, которые должны высеять на питательную среду. Иногда появляется возможность выделить сразу необходимые бактерии, зная их очаги распространения в организме.

Через двое-трое суток отбираются нужные колонии и высеваются на твердые среды чашек Петри с помочью стерильной петли. Во множестве лабораторий работают с пробирками, где может находиться твердая или жидкая питательная среда. Так и проводится бактериологический метод исследования в микробиологии.

Второй этап

После получения отдельных колоний бактерий проводится непосредственный макро- и микроанализ. Измеряются все параметры колоний, определяется цвет и форма каждой из них. Нередко проводится подсчет колоний на чашке Петри, а затем в исходном материале. Это имеет значение при анализе патогенных бактерий, от числа которых зависит степень заболевания.

Бактериологический метод исследования, 2 этап которого заключается в изучении отдельных колоний микроорганизмов, может быть сопряжен с биологическим способом анализа бактерий. Еще одна цель работы на этом этапе - увеличить количество исходного материала. Это можно сделать на питательной среде, а можно провести эксперимент в естественных условиях на живых подопытных организмах. Патогенные бактерии будут размножаться, и в результате кровь будет содержать миллионы клеток прокариот. Из взятой крови легко приготовить необходимый рабочий материал бактерий.

Третий этап

Самая важная часть исследования - это определение морфологических, биохимических, токсигенных и антигенных свойств культуры бактерий. Работа ведется с заранее «очищенными» культурами на питательной среде, а также с препаратами (зачастую окрашенными) под микроскопом.

Установить принадлежность патогенных или условно-патогенных бактерий к той или иной систематической группе, а также определить их устойчивость к лекарствам позволяет бактериологический метод исследования. 3 этап - антибиотики, т. е. анализ поведения клеток бактерий в условиях содержания лекарственных препаратов в окружающей среде.

Исследование устойчивости культуры к антибиотику имеет важное практическое значение, когда необходимо прописать для конкретного пациента необходимые, а главное, действенные препараты. Здесь и может помочь бактериологический метод исследования.

Что такое питательная среда?

Для развития и размножения бактерии должны находиться в заранее подготовленных питательных средах. По консистенции они могут быть жидкие или твердые, а по происхождению - растительные или животные.

Основные требования к питательным средам:

1. Стерильность.

2. Максимальная прозрачность.

3. Оптимальные показатели кислотности, активности воды и других биологических величин.

Получение изолированных колоний

1. Метод Дригальского. Он заключается в том, что на бактериальную петлю наносится мазок с различными видами микроорганизмов. Этой петлей проводят по первой чашке Петри с питательной средой. Далее, не меняя петлю, методом остаточного материала проводят по второй и третьей чашкам Петри. Так, на последних образцах колонии бактерии будут засеваться не слишком плотно, тем самым упрощается возможность найти необходимые для работы бактерии.

2. Метод Коха. В нем используются пробирки с расплавленной питательной средой. Туда помещается петля или пипетка с мазком бактерий, после чего содержимое пробирки выливается на специальную пластинку. Агар (или желатин) застывает через какое-то время, а в его толще легко обнаружить нужные колонии клеток. Важно перед началом работы развести смесь бактерий в пробирках, чтобы концентрация микроорганизмов не была очень большой.

Этапы которого основаны на выделении нужной культуры бактерий, не обходится без этих двух способов нахождения изолированных колоний.

Антибиотикограмма

Визуально реакцию бактерий на препараты можно заметить двумя практическими способами:

1. Метод бумажных дисков.

2. Разведение бактерий и антибиотика в жидкостной среде.

Метод бумажных дисков требует наличия культуры микроорганизмов, которые были выращены на твердой питательной среде. На такую среду кладут несколько бумажек округлой формы, пропитанных антибиотиками. Если препарат успешно справляется с нейтрализацией бактериальных клеток, после такой обработки останется участок, лишенный колоний. Если же реакция на антибиотик отрицательная, бактерии выживут.

В случае использования жидкой питательной среды сперва готовят несколько пробирок с культурой бактерий разных степеней разведения. В эти пробирки добавляют антибиотики, и в течение суток наблюдают за процессом взаимодействия вещества и микроорганизмов. В конечном итоге получается качественная антибиотикограмма, по которой можно судить об эффективности препарата для данной культуры.

Основные задачи анализа

Здесь перечислены по пунктам цели и этапы бактериологического метода исследования.

1. Получить исходный материал, который будет использоваться для выделения колоний бактерий. Это может быть мазок с поверхности любого предмета, слизистой оболочки или полости органа человека, анализ крови.

2. на твердой питательной среде. Через 24-48 часов на чашке Петри можно обнаружить колонии бактерий разных видов. Отбираем по морфологическим и/или биохимическим критериям нужную и проводим уже с ней дальнейшую работу.

3. Размножение полученной культуры. Бактериологический метод исследования может опираться на механический или биологический способ увеличения численности культуры бактерии. В первом случае ведется работа с твердыми или жидкими питательными средами, на которых в термостате размножаются бактерии и образуют новые колонии. Биологический способ требует естественных условий увеличения численности бактерий, поэтому здесь микроорганизмами заражается подопытное животное. Через несколько суток в пробе крови или мазке можно обнаружить множество прокариот.

4. Работа с очищенной культурой. Чтобы определить систематическое положение бактерий, а также их принадлежность к возбудителям заболеваний, необходимо провести тщательный анализ клеток по морфологическим и биохимическим признакам. При исследовании патогенных групп микроорганизмов важно знать, насколько эффективно действие антибиотиков.

Это была общая характеристика бактериологического метода исследования.

Особенности проведения анализа

Главное правило проведения бактериологического исследования - это максимальная стерильность. Если идет работа с пробирками, посевы и пересевы бактерий должны проводиться только над нагретой спиртовкой.

Все этапы бактериологического метода исследования требуют использования специальной петли или пастеровской пипетки. Оба инструмента должны быть предварительно обработаны в пламени спиртовки. Что касается пастеровской пипетки, то тут перед термической стерилизацией необходимо отломать кончик пипетки пинцетом.

Техника посева бактерий тоже имеет свои особенности. Во-первых, при посеве на твердые среды проводят бактериальной петлей по поверхности агара. Петля, конечно же, уже должна иметь на поверхности образец микроорганизмов. Также практикуется посев внутрь и в этом случае петля или пипетка должны достичь дна чашки Петри.

При работе с жидкими средами используются пробирки. Здесь важно следить, чтобы жидкости не касались краев лабораторной посуды или пробки, а используемые инструменты (пипетка, петля) не дотрагивались до посторонних предметов и поверхностей.

Значение биологического метода исследования

Анализ пробы бактерий имеет свое практическое применение. Прежде всего бактериологический метод исследования может использоваться в медицине. К примеру, необходимо изучить микрофлору больного, чтобы установить правильный диагноз, а также выработать правильный ход лечения. Здесь помогает антибиотикограмма, которая покажет активность лекарственных препаратов против возбудителя заболеваний.

Анализ бактерий используется в лаборатории для определения таких опасных заболеваний, как туберкулез, возвратный тиф или гонорея. Также он применяется для изучения бактериального состава миндалин, полостей органов.

Бактериологический метод исследования можно использовать для определения загрязненности среды. По данным о количественном и качественном составе мазка с поверхности какого-либо предмета определяется степень заселенности данной среды микроорганизмами.

Метод штриховых посевов сегодня используется в микробиологических лабораториях чаще всего. Материал, который содержит микроорганизмы, набирают бактериологической петлей и наносят на поверхность питательной среды возле края чашки. Снимают избыток материала и проводят занял его параллельными штрихами от края к краю чашки. Спустя сутки инкубации посевов при оптимальной температуре на поверхности чашки вырастают изолированные колонии микробов.

Метод штрихов

Для получения изолированных колоний можно использовать занял тампоном, которым проводили забор исследуемого материала. Несколько приоткрывают чашку Петри с питательной средой, вносят туда тампон и осторожными движениями втирают материал в поверхность чашки, возвращая постепенно тампон и чашку.

Таким образом, существенное преимущество методов пластинчатых разведений Коха, Дригальского и штриховых посевов заключается в том, что они создают изолированные колонии микроорганизмов, которые при инокуляции на другую питательную среду превращаются в чистую культуру.

Выделение чистой культуры аеробних микроорганизмов состоит из ряда этапов.

В первый день (1 этап исследования) в стерильную посуду (пробирка, колба, флакон) забирают патологический материал. Его изучают за внешним видом, консистенцией, цветом, запахом и другим признаками, готовят мазок, красят и исследуют под микроскопом. В некоторых случаях (острая гонорея, чума) на этом этапе можно поставить предыдущий диагноз, а кроме того, подобрать среды, на которые будет засеваться материал. Занял проводят бактериологической петлей (применяется чаще всего), с помощью шпателя за методом Дригальского, ватно-марлевым тампоном. Чашки закрывают, переворачивают вверх дном, подписывают специальным карандашом и ставят в термостат при оптимальной температуре (37 °С) на 18-48 год. Цель этапа – получить изолированные колонии микроорганизмов.

Однако, порой с целью нагромождения материала его засевают на жидкие питательные среды.

На второй день (2 этап исследования) на поверхности плотной питательной среды микроорганизмы образуют сплошной, густой рост или изолированные колонии. Колония – это видимые невооруженным глазом скопления бактерий на поверхности или в толще питательной среды. Как правило, каждая колония формируется из потомков одной микробной клетки (клоны), потому их состав достаточно однороден. Особенности роста бактерий на питательных средах являются проявлением их культуральных свойств.

Чашки тщательным образом рассматривают и изучают изолированные колонии, которые выросли на поверхности агара. Обращают внимание на величину, форму, цвет, характер краев и поверхности колоний, их консистенцию и другие признаки. При потребности исследуют колонии под лупой, малым или большим увеличением микроскопа. Структуру колоний исследуют в проходном свете при малом увеличении микроскопа. Они могут быть гиалинови, зернистые, нитевидные или волокнистые, которые характеризуются наличием переплетенных нитей в толще колоний.

Характеристика колоний – важна составная часть работы бактериолога и лаборанта, ведь микроорганизмам каждого вида присущи свои особенные колонии.

Характеризовать колонии можно за разными признаками. За величиной (диаметром) их разделяют на больших (4-6 мм и больше), средних (2-4 мм), мелких (1-2 мм), карликовых или точечных (меньше 1 мм). Форма колоний может быть самой разнообразной: правильно круглая, неправильная (амебоподибна), ризоидна. Они бывают прозрачными, что пропускают светло, и мутными.

За рельефом и контуром формы в вертикальном разрезе колонии разделяются на плоских, выпуклых, куполообразных, краплеподибни, конусообразные, плоскоопукли, плоские, что стелются по поверхности среды, с вдавленным центром, из припиднятою в виде соска серединой.

Поверхность колоний может быть матовой или блестящей, с глянцем, сухой или влажной, гладкой и блестящей или шершавой. Гладкие и блестящие колонии помечают как S-формы (smooth –гладкий и блестящий), а шершавые – R-формы (rough – шершавый, неравный).

Форма шершавых поверхностей также может быть разнообразной: морщинистой, гирозной, бородавчатой, шагреневой, иметь радиальную исчерченность и тому подобное.

Подавляющее большинство микроорганизмов образуют бесцветные колонии или мутно молочного цвета. Однако некоторые из них формируют цветные колонии. Их цвет определяется пигментом, который синтезируют бактерии: белые, кремовые, желтые, золотистые, синие, красные и тому подобное.

При доторканни к колонии петлей можно определить ее консистенцию: пастообразная, вязкая или слизистая, сухая, хрупкая и тому подобное.

Из подозрительных колоний готовят мазки, окрашивают за методом Грамма для изучения морфологических и тинкториальних свойств возбудителей, исследуют подвижную бактерий в “висячей” или “раздавленой” капле. Эти признаки имеют чрезвычайно большое диагностическое значение при характеристике отдельных видов микроорганизмов.

Остатки исследуемых колоний осторожно, не касаясь других, снимают из поверхности среды и засевают на скошенный агар или на секторы чашки Петри с питательной средой для получения чистой культуры. Пробирки или чашки с посевами помещают в термостат при оптимальной температуре на 18-24 год.

Сегодня, как правило, бактериологи пытаются пользоваться стандартными сухими питательными средами, которые выпускает микробиологическая промышленность. Такие среды позволяют существенно улучшить результаты микробиологических исследований и стандартизировать их.

На жидких питательных средах бактерии также могут расти по-разному, хотя особенности проявлений роста более бедны, чем на плотных.

Бактерии способны вызывать диффузное помутнение среды, цвет его при этом может не изменяться или приобретает цвет пигмента. Такой характер роста чаще всего наблюдается в большинстве факультативно анаэробных микроорганизмов.

Порой происходит образование осадка на дне пробирки. Он может быть крошкообразным, гомогенным, вязким, слизистым и др. Среда над ним может оставаться прозрачной или становиться мутной. Если микробы пигмента не образуют, осадок имеет сирувато-билий или желтоватый цвет. Подобным чином растут, как правило, анаэробные бактерии.

Пристеночный рост проявляется образованием хлопьев, зерен, прикрепленных к внутренним стенкам пробирки. Среда при этом остается прозрачной.

Аеробные бактерии имеют тенденцию к поверхностному росту. Часто образуется нежная бесцветная или голубоватая пленка в виде едва заметного налета на поверхности, которая исчезает при стряхивании или взбалтывании среды. Пленка может быть влага, толстая, иметь вязанку, слизистую консистенцию и прилипать к петле, тянется за ней. Однако, встречается и плотная, сухая, хрупкая пленка, цвет которой зависит от пигмента, который производится микроорганизмами.

В случае необходимости изготовляется мазок, окрашивается, исследуется под микроскопом, а микроорганизмы засеваются петлей на поверхность плотной питательной среды для получения изолированных колоний.

На третий день (3 этап исследования) изучают характер роста чистой культуры микроорганизмов и проводят ее идентификацию.

Сначала обращают внимание на особенности роста микроорганизмов на среде и делают мазок, крася его за методом Грама, с целью проверки культуры на чистоту. Если под микроскопом наблюдают бактерии однотипной морфологии, размеров и тинкториальних (способность краситься) свойств, делают вывод, что культура чиста. В некоторых случаях уже за внешним видом и особенностями их роста можно сделать вывод о виду выделенных возбудителей. Определение вида бактерий за их морфологическими признаками называется морфологической идентификацией. Определения вида возбудителей за их культуральными признаками называют культуральной идентификацией.

Однако этих исследований недостаточно, чтобы сделать окончательный вывод о виду выделенных микробов. Потому изучают биохимические свойства бактерий. Они достаточно разнообразны.

Чаще всего исследуют сахаролитические, протеолитические, пептолитические, гемолитические свойства, образования ферментов декарбоксилаз, оксидазы, каталазы, плазмокоагулазы, ДНК-азы,фибринолизина, восстановление нитратов в нитриты и тому подобное. Для этого существуют специальные питательные среды, которые засевают микроорганизмами (пестрый ряд Гисса, МПБ, свернутая сыворотка, молоко и др.).

Запомните этапы выделения чистых культур аеробних бактерий:

1 - макро- и микроскопическое изучение исследуемого материала и посев на плотные питательные среды для получения изолированных колоний.

2 - макро- и микроскопическое изучение колоний и пересев их на скошенный агар для получения чистой культуры;

3 - проверка культуры на чистоту и ее идентификация;

4 - вывод о выделенной культуре.

9. Методы культивирования и идентификация анаэробов. Выделение чистой культуры анаэробных бактерий.

Все микроорганизмы по типу дыхания разделяются на две основных группы: аеробни (Corynebacterium diphtheriae, Vibrio сholerae и тому подобное) и анаэробные (Clostridium tetani, Clostridium botulinum, Clostridium perfringens и др.) . Если материал, из которого следует выделить анаэробные возбудители, предварительно прогреть, а затем культивировать в анаэробных условиях, то вырастут именно эти бактерии.

Выделение чистой культуры анаэробных бактерий

В лабораторной практике часто придется работать с анаэробными микроорганизмами. Они более прихотливы к питательным средам, чем аэробы, чаще нуждаются в специальных ростовых добавках, требуют прекращения доступа кислорода при их культивировании, длительность роста их длиннее. Потому работа с ними более сложна, требует значительного внимания бактериологов и лаборантов.

Важной является защита материала, который содержит анаэробные возбудители от токсичного влияния атмосферного кислорода. Потому материал из очагов гнойной инфекции рекомендуется забирать во время их пункции с помощью шприца, время между взятием материала и посевом его на питательную среду должно быть максимально коротким.

Поскольку для культивирования анаэробных бактерий используют специальные питательные среды, которые не должны содержать кислорода и имеют низкий окислительно восстановительныйпотенциал (-20 -150 мВ), к их составу вводят индикаторы – резазурин, метиленовий синей и тому подобное, которые реагируют на смену этого потенциала. При его росте возобновлены бесцветные формы индикаторов изменяют свой цвет: резазурин окрашивает среду в розовый цвет, а метиленовий синей – в голубой. Такие изменения свидетельствуют о невозможности использования сред для культивирования анаэробных микробов.

Способствует снижению окислительно восстановительного потенциала введения в среду не меньше 0,05 % агару, который, увеличивая его вязкость, способствует уменьшению поступления кислорода. Это, в свою очередь, достигается еще и использованием свежих (не позже двух часов после изготовления) и редуцируемых питательных сред.

Следует учесть, что через особенности бродильного типа метаболизма анаэробных бактерий они требуют более богатых на питательные компоненты и витамины сред. Чаще всего используют сердечно мозговой и печеночный настои, соевые и дрожжевые экстракты, гидролитичний перевар казеина, пептон, триптон. Обязательным является добавление факторов росту, таких как твин-80,гемин, менадион, цельная или гемолизированная кровь.

Методы создания анаэробных условий. Учитывая, что свободный молекулярный кислород является токсичным для облигатно-анаэробных бактерий, обязательным условием культивирования таких микроорганизмов является ограничение его доступа. Существует ряд методов (механических, физических, биологических), которые позволяют это обеспечить.

Физические методы. 1. Перед посевом бактерий на питательную среду его обязательно регенерируют для удаления избытка растворенного кислорода. С этой целью среду кипятят в течение 15-20мин на водяной бане, а затем быстро охлаждают к необходимой температуре.

2. Для предупреждения проникненя кислорода в среду его заливают слоем стерильного вазелинового масла или парафином.

3. Столбик питательной среды в пробирках должен быть достаточно высоким (10-12 см). Кислород, как правило, дифундирует в толщу столбика на глубину до 2 см, потому ниже создаются благоприятные условия для культивирования анаэробных микробов.

4. Эвакуационно заместительный метод заключается в использовании анаэростатов. Они представляют собой герметические металлические или пластмассовые банки, из которых можно выкачать кислород и заменить его инертным газом (гелий, азот, аргон). Допускается использование трехкомпонентной газовой смеси, которая состоит из 80 % азота, 10 % диоксиду углерода и 10 % водорода. Порой допустимым считается использование природного газа. Для поглощения кислорода, который остается в анаэростате, используют палладиевые катализаторы. С целью поглощения водяной пары используют хлорид кальция, силикагель и тому подобное, которые помещают на дно анаеростата.

Химические методы. 1. Использование веществ, способных поглощать кислород. С этой целью допустимым является применение щелочного раствора пирогаллола. При этом учитывают поглощающую активность вещества: на 100 мл емкости герметического сосуда, в котором находятся чашки Петри, используют 1 г пирогаллола и 10 мл 2,5 N раствора гидроксида натрия.

Кислородосвязывающий эффект имеет также гидросульфит натрия (Na2S2O4). Для связывания кислорода в 1 л воздуха используют смесь, которая состоит из 100 мл свежего 20 % растворуNa2S2O4 и 16 мл 50 % гидроксида калия.

2. Применение веществ-редуцентов. Учитывая, что рост облигатно-анаэробных бактерий происходит в средах с низким уровнем окислительно восстановительного потенциала, к ним добавляются специальные восстановители: цистеин (0,03-0,0,5 %), тиогликолевую кислоту или тиогликолат натрия (0,01-0,02 %), сульфид натрия, аскорбиновую кислоту (0,1 %), разнообразные сахара.

Функции обновителей могут выполнять кусочки паренхиматозних органов животных (печенка, почки, сердце) или даже растений (картофель, другие корнеплоды).

Степень поглощения кислорода или степень возобновления среды измеряют или электрометрически или с помощью индикаторов (резазурин, нейтральный красный, феносафранин).

3. Использование специальных газогенерирующих систем, которые позволяют создать бескислородные условия в микроанаеростатах, транспортных пластиковых пакетах и тому подобное. Одной из самых распространенных есть система “Gas Generating Box”. В ее состав входят химические генераторы водорода (борогидрит натрию) и углекислого газа (таблетки бикарбоната натрия и лимонной кислоты), а также палладиевый катализатор, который поглощает кислород.

Чашки с посевами помещаются в микроанаеростат, на дне которого находится слой палладиевого катализатору. Кончик пакета “Gas Generating Box” надрезают ножницами, и у него наливают 10-15мл воды. Пакет располагают в микроанаеростати. Через 15-20 мин в нем создаются анаэробные условия. Водород, который выделяется, взаимодействует с кислородом, образовывая воду, а углекислота продуцируется при взаимодействии бикарбоната натрия с лимонной кислотой.

Биологические методы. 1. Метод Фортнера. Метод заключается в совместном культивировании на одной среде аэробних и анаэробных микроорганизмов. Сначала по диаметру чашки вырезаютполоску агару шириной до 0,5-1,0 см. С одной стороны засевают исследуемый материал, что содержит анаэробные возбудители, а из другого – микробы, которые являются индикатором анаэробных условий (Serratia marcescens или “чудесная палочка”). Края чашки парафинируют или закрывают пластилином. Через некоторое время на поверхности среды вырастают колонии как аэробных, так и анаэробных микробов. При поглощении кислорода Serratia marcescens дает рост бледно-розовых или бесцветных колоний, а при нарушениях герметичности – ярко-красные. На другой половине чашки вырастают колонии анаэробных микробов.

2. Метод Хеннеля (“часовых стекол”). Он является своеобразной модификацией предыдущего. Материал, который содержит анаэробные возбудители, засевается на поверхность питательной среды диаметром 2-2,5 см. Сверху он покрывается “часовым стеклом”, заполненным слоем МПА и засеяным Serratia marcescens. Аеробни микробы, поглощая кислород, создают условия для благоприятного роста анаэробных возбудителей.

В высоко специализированных лабораториях пользуются специальной анаэробной техникой, которая включает использование питательных сред без кислорода с обновителями, выполнения посевов и пересеваний в атмосфере инертных газов, углекислоты и тому подобное.

За последние годы созданы стационарные анаэробные боксы, которые содержат все необходимое для создания анаэробных условий культивирования, включая термостаты. Как правило, такие камеры заполняются трикомпонентною газовой смесью. Бактериолог работает в камере, находясь внешне, применяя резиновые рукавицы, вмонтированные у нее. Такое оборудование имеет неопровержимые преимущества, которые заключаются в том, что полностью исключается контакт кислорода с исследуемым материалом.

Выделение и идентификация анаэробных микроорганизмов

Учитывая современное развитие микробиологической науки, выделять и идентифицировать культуры анаэробных микроорганизмов можно аналогично аеробним бактериям. Обязательным при этом есть соблюдение на всех этапах исследования условий анаэробиоза, используя для этого трикомпонентну газовую смесь (в определенном соотношении азот, водород и углекислый газ) или систему “Gas Generating Box”.

Однако возбудители столбняка, ботулизма, газовой анаэробной инфекции можно выделять и идентифицировать за другой схемой.

На первом этапе (И день исследования) изучают макроскопические особенности клинического материала, делают мазок и окрашивают его за методом Грама. После этого материал засевают на среду Китта-Тароцци и молоко. Предварительно среду регенерируют на кипящей водяной бане в течение 10-20 мин и охлаждают. Непосредственно после посева материала среду нагревают на водяной бане при 80°С в течение 20 мин для уничтожения вегетативных неспоровых форм микробов. Среды ставят в термостат и при температуре 37 °С культивируют 1-3 сутки.

На втором этапе изучают проявления роста микроорганизмов (помутнение, образование осадка и газа на среде Китта-тароцци, пептонизация молока). Поскольку среда Китта-тароцци сверху залита слоем вазелинового масла для предотвращения доступа кислорода, у него окунают пастеровскую пипетку, набирают жидкость, из которой готовят мазок, крася его за методом Грамма. Под микроскопом в мазке можно видеть большие граммположительные палочкоподобные бактерии. После этого проводят занял материалу за методами Вейнберга или Цейсслера для получения изолированных колоний.

За методом Вейнберга готовят несколько узких высоких пробирок (3-4) с растопленным и охлажденным до 42-45 °С сахарным м’ясо-пептонним агаром. Возможно использование среды Вильсон-блера. Материал из среды Китта-тароцци вносят в первую пробирку с помощью пастеровской пипетки и тщательным образом перемешивают, потом переносят в друге, а дальше – в третью. Для застудневания агара их быстро охлаждают под струей холодной водопроводной воды. За счет этого живые микробные клетки фиксируются в определенных участок агара. После застывания агара пробирки культивируют при оптимальной температуре в течение 1‑2 суток для образования изолированных колоний.

Колонии по Вейнбергу

Содержание каждой пробирки можно, кроме того, всосать в пастеровские пипетки или трубки Виньяль-Вейона, следя, чтобы не было пузырьков воздуха. Последние имеют длину возле 30 см и диаметр 0,5-0,6 см. Верхний конец их, который закрывается ватой, имеет перетяжку, а нижний вытянут в виде капилляра. После заполнения пипетки ее вытянутый конец запаивают и кладут в термостат для культивирования. Через 1-2 сутки в агаре вырастают колонии анаэробных бактерий. Для того, чтобы их изолировать, трубку надрезают напильником на определенном уровне, разламывают, колонию берут бактериальной петлей или иглой, переносят в соответствующую среду.

Для выделения изолированных колоний за методом Цейсслера материал из среды Китта-тароцци или молока наносят петлей или 1-2 капли пастеровской пипеткой на чашку Петри с сахарно-кровяным агаром и делают посев шпателем за методом Дригальского. Не стерилизуя шпатель, засевают вторую чашку, а затем и третью. Чашки переворачивают вверх дном, подписывают, ставят ванаеростат, в котором создают анаэробные условия, а затем – в термостат при температуре 37 °С на 2-3 сутки. На последней чашке вырастают изолированные колонии.

Третий этап исследования начинается с изучения морфологических особенностей колоний, которые выросли в чашках Петри или трубках Виньяль-вейона. Исследуются их форма, величина, цвет, характер краев, рельеф колонии, консистенция и тому подобное. Из колоний готовят мазки, красят их за методом Грама. После этого колонии отсевают в среду Китта-Тароцци для получения чистой культуры. Посевы инкубируют определенное время при оптимальной температуре.

На четвертом этапе обращают внимание на особенности роста чистой культуры возбудителей на соответствующих средах, проверяют ее на чистоту и проводят идентификацию. Идентифицируют выделенные чистые культуры анаэробных микроорганизмов подобно аеробних за морфологическими, культуральными, биохимическими и биологическими признаками. Обязательно используют определение токсигенних свойств возбудителей в биологичниий пробе и реакции нейтрализации на лабораторных животных. В некоторых случаях определяют антигенные свойства микроорганизмов.

Таким образом, на основании изучения разнообразных свойств микроорганизмов делается вывод о принадлежности их к тому или другому виду.

Среды для культивирования анаэробных микроорганизмов

Среду Китта-Тароцци готовят на основе бульйона Хоттингера, к которому добавляют кусочки бычьей печенки или мяса. Стерилизуют его при 1 атмосфере в течение 30 мин. Активная реакция среды – 7,4-7,6. После посева материала среду заливают сверху слоем вазелинового масла толщиной до 1 см.

Анаэробный кровяной агар готовят на основе еритрит-агара. В его состав входят также специальные добавки: среда 199 (10 %), гемин (10 мкг/мл), твин-80 (0,1 %), метадион (10 мкг/мл), цитратнакровь (до 5 %) и тому подобное. После стерилизации его разливают в чашки Петри. Используют не позже, как через 2 год после изготовления.

Желтковый агар. В растопленную и охлажденную до 56-60 °С среду на основе еритрит-агара добавляют суспензию куриного желтка (20 %), глюкозу (0,2 %), гемин (10 мкг/мл) и разливают в чашки Петри. Среду используют для определения лецитиназнои активности возбудителей, в частности C. perfringens. При наличии лецитиназы вокруг колоний образуются зоны помутнения.

Коммерческая среда для контроля стерильности. Его можно использовать в качестве транспортное. Для улучшения роста анаэробных бактерий к его составу можно вводить специальные добавки, такие как среда 199, гемин, твин-80, метадион, цитратна кровь и тому подобное.

Среда Вильсон-блера. Его готовят на основе растопленного и охлажденного до 60 °С 1 % сахарного (глюкоза) МПА рН 7,4 с добавлением на 100 мл 10 мл стерильного 20 % раствору сульфита натрия и 1 мл 8 % раствору хлорида железа. Готовую среду не стерилизуют.

Его используют для ускоренной диагностики газовой анаэробной инфекции, вызванной Clostridium рerfringens. Уже через 1-2 год наблюдают изменение среды: оно чернеет в результате возобновления сульфита натрия в сульфат, который взаимодействует с хлоридом железа, образовывая сульфид железа. Появляются также разрывы агара в результате интенсивного газообразования.

Лакмусовое молоко. Готовят среду из свежего молока. Предварительно его кипятят и оставляют в прохладном месте на одни сутки. Снимают верхний слой жира и процедуру повторяют. Молоко фильтруют, и 10 % раствором бикарбоната натрия доводят рН до 7,2. Перед стерилизацией к молоку добавляют 5-10 % лакмусовой настойки и идентичное количество 10 % раствору бикарбоната натрия, чтобы пена молока приобрела сине-фиолетовый оттенок. При пидлужуванни молока оно становится сине-фиолетовым, при пидкислюванни – розовым вплоть до красного.

10. Методы промышленного культивирования бактерий.

Для осуществления любого биотехнологического процесса необходимы:

Культура микроорганизмов;

Питательная среда;

Аппаратура для выращивания и проведения вспомогательных операций;

Средства контроля и управления процессом.

Культивирование является основной стадией технологического процесса и во многом определяет количественные и качественные характеристики производства препаратов. На стадии культивирования осуществляется накопление как самой биомассы, так и продуктов метаболизма (жизнедеятельности) микроор-

ганизмов. Так, при производстве бактериальных препаратов целевым продуктом является сама биомасса, в других случаях продукты, синтезируемые клеткой, – антибиотики, ферменты, аминокислоты и др. При этом синтезируемый продукт может накапливаться как внутри клеток, так и выделяться в культуральную смесь.

В том случае, когда культура растет на поверхности жидкой или плотной питательной среды, потребляя содержащиеся в ней субстраты и выделяя в эту среду продукты метаболизма, способ культивирования называют поверхностным.

Когда же микроорганизмы распределяются по всему объему жидкой питательной среды, культивирование называют глубинным (жидкофазным). В таком случае кислород поступает к клеткам в результате интенсивной операции перемешивания.

Последний способ наиболее широко применяется в настоящее время в производстве большинства препаратов по следующим причинам:

1. Позволяет получить большое количество бактериальной массы за короткое время. Так, при культивировании микроорганизмов группы кишечной палочки в условиях состояния покоя количество микробов не превышает 1-2 млрд/см-3, а при применении принудительной аэрации урожайность достигает 50-60 млрд/см-3.

2. Процесс легко управляем. С целью длительного поддержания роста и размножения микроорганизмов в процессе их культивирования дополнительно вводят углеродные и азотистые соединения, а при необходимости и другие стимуляторы роста.

Данный способ также позволяет легко корректировать рН среды в процессе культивирования.

3. Процесс максимально технологичен.

Технологический процесс глубинного выращивания микроорганизмов в реакторах (ферментерах) складывается из следующих этапов:

Отбор штаммов микроорганизмов и работа с ними;

Приготовление посевной микробной культуры;

Приготовление и стерилизация питательных сред;

Подготовка биореактора к посеву;

Выращивание микроорганизмов в реакторе и контроль над процессом культивирования.

Кроме того, он включает ряд вспомогательных операций:

Стерилизацию оборудования и коммуникаций;

Приготовление и стерилизацию пеногасителей, растворов и др.

Остановимся на каждом из этапов культивирования.

Эталонные штаммы микроорганизмов хранятся и поддерживаются на заданном уровне во ВГНИКИ (Всесоюзный государственный научно-исследовательский институт клеточной инженерии) ветеринарных препаратов. Эти штаммы, в свою очередь, являются производственными, поскольку на их основе готовятся вакцины.

Наряду с производственными и эталонными штаммами во ВГНИКИ хранятся контрольные штаммы, которые используют для оценки качества вакцинных препаратов. Эти штаммы должны быть генетически однородными популяциями микроорганизмов со стабильными морфологическими, специфическими и биологическими свойствами. Основными требованиями к этим штаммам являются их высокие антигенные и иммуногенные свойства.

Производственные, эталонные штаммы должны сохранять

генетическую стабильность антигенных, иммуногенных и дру-

гих присущих им биологических свойств на протяжении 10-20

последовательных пересевов как in vivo, так и in vitro.

Обычно производственное культивирование микроорганизмов осуществляется в больших объемах. Поэтому вначале из имеющегося эталонного штамма микроорганизма, находящегося, как правило, в лиофильно высушенном состоянии в ампуле, делают посевы в небольшие емкости, например, во флаконе емкостью 100-200 см3, заполненные по 50-150 мл производственной средой. Затем из флаконов делают высевы в большие емкости (бутыли объемом 18-20 л). При хорошем накоплении микроорганизмов такую культуру вносят в реактор и называют посевной (маточной) культурой. При этом нужно предварительно рассчитать необходимое количество посевной культуры для производственного культивирования микроорганизмов исходя из посевной дозы, которая обычно составляет от 1 до 10% по объему. Посевные микробные культуры также контролируются на сохранение ими типичных морфологических, культурально-биохимических, антигенных и иммуногенных свойств, а также на отсутствие в них посторонней микрофлоры (ПМФ).

11. Международная классификация и характеристика ферментов микроорганизмов.

Ферменты, образу­емые бактериальной клеткой, могут локали­зоваться как внутри клетки - эндоферменты, так и выделяться в окружающую среду - экзоферменты. Экзоферменты играют большую роль в обеспечении бактериальной клетки доступными для проникновения внутрь ис­точниками углерода и энергии. Большинство гидролаз является экзоферментами, которые, выделяясь в окружающую среду, расщепля­ют крупные молекулы пептидов, полисаха­ридов, липидов до мономеров и димеров, способных проникнуть внутрь клетки. Ряд экзоферментов, например гиалуронидаза, коллагеназа и другие, являются ферментами агрессии. Некоторые ферменты локализо­ваны в периплазматическом пространстве бактериальной клетки. Они участвуют в про­цессах переноса веществ в бактериальную клетку. Ферментативный спектр является таксономическим признаком, характерным для семейства, рода и - в некоторых слу­чаях - для видов. Поэтому определением спектра ферментативной активности поль­зуются при установлении таксономического положения бактерий. Наличие экзофермен­тов можно определить при помощи диффе­ренциально-диагностических сред, поэтому для идентификации бактерий разработаны специальные тест-системы, состоящие из набора дифференциально-диагностических сред.

По типу катализируемых реакций ферменты подразделяются на 6 классов согласно иерархической классификации ферментов (КФ, EC - Enzyme Comission code). Классификация была предложена Международным союзом биохимии и молекулярной биологии (International Union of Biochemistry and Molecular Biology). Каждый класс содержит подклассы, так что фермент описывается совокупностью четырёх чисел, разделённых точками. Например, пепсин имеет название ЕС 3.4.23.1. Первое число грубо описывает механизм реакции, катализируемой ферментом:

§ КФ 1: Оксидоредуктазы , катализирующие окисление или восстановление. Пример: каталаза, алкогольдегидрогеназа.

§ КФ 2: Трансферазы , катализирующие перенос химических групп с одной молекулы субстрата на другую. Среди трансфераз особо выделяют киназы, переносящие фосфатную группу, как правило, с молекулы АТФ.

§ КФ 3: Гидролазы , катализирующие гидролиз химических связей. Пример: эстеразы, пепсин, трипсин, амилаза, липопротеинлипаза.

§ КФ 4: Лиазы , катализирующие разрыв химических связей без гидролиза с образованием двойной связи в одном из продуктов.

§ КФ 5: Изомеразы , катализирующие структурные или геометрические изменения в молекуле субстрата.

§ КФ 6: Лигазы , катализирующие образование химических связей между субстратами за счёт гидролиза АТФ. Пример: ДНК-полимераза.

Будучи катализаторами, ферменты ускоряют как прямую, так и обратную реакции, поэтому, например, лиазы способны катализировать и обратную реакцию - присоединение по двойным связям.

12. Роль ферментов в идентификации бактерий. Методы определения гликолитических и протеолитических ферментов бактерий. Дифференциально-диагностические среды (моносубстратные и полисубстратные).


Похожая информация.


Важным этапом бактериологического исследования ляется посев. В зависимости от цели исследования, харак ра посевного материала и среды используют разные методь посева. Все они включают обязательную цель: оградить пс сев от посторонних микробов. Поэтому работать следует быстро, но без резких движений, усиливающих колебан* воздуха. Во время посевов нельзя разговаривать. ПосевМ лучше делать в боксе (при работе с заразным материалол необходимо выполнять правила личной безопасности).

Этапы выделения чистой культуры:

1-й день - получение изолированных колоний. Кашп исследуемого материала петлей, пипеткой или стеклянной палочкой наносят на поверхность агара в чашке Петри. Шпа-i телем втирают материал в поверхность среды; не прожиг и не перевертывая шпателя, производят посев на 2-й, а тем на 3-й чашке. При таком посеве на 1-ю чашку приходится много материала и соответственно много микробов, на 2-ю меньше и на 3-ю еще меньше.

Можно получить изолированные колонии при посеве петлей. Для этого исследуемый материал эмульгируют в бульоне или изотоническом растворе натрия хлорида.

2-й день - изучают рост микробов на чашках. В 1-й чашке обычно бывает сплошной рост - выделить изолированную колонию не удастся. На поверхности агара во 2-й и 3-й чашке вырастают изолированные колонии. Их изучают невооруженным глазом, с помощью лупы, при малом увеличении микроскопа и иногда в стереоскопическом микроскопе. Нужную колонию отмечают со стороны дна чашки и пересевают на скошенный агар. Посевы ставят в термостат. (Пересевать можно только изолированные колонии.)

3-й день - изучают характер роста на скошенном агаре. Делают мазок, окрашивают его и, убедившись в том, что культура чистая, приступают к ее изучению. На этом выделение чистой культуры заканчивается. Выделенная из определенного источника и изученная культура называется «штаммом».

При выделении чистой культуры из крови (гемокуль-туры) ее предварительно «подращивают» в жидкой среде: 10-15 мл стерильно взятой крови засевают в 100-150 мл жидкой среды. Так поступают потому, что в крови обычно мало микробов. Соотношение засеваемой крови и питательной среды 1: 10 не случайно - так достигается разведение крови (неразведенная кровь губительно действует на микроорганизмы). Колбы с посевом ставят в термостат. Через сутки (иногда через большее время, в зависимости от выделяемой культуры) из содержимого колб делают высевы на чашки для получения изолированных колоний. При необходимости повторяют высевы с интервалом в 2-3 дня.

При выделении чистой культуры из мочи, промывных вод желудка и других жидкостей их предварительно центрифугируют в асептических условиях и засевают осадок. Дальнейшее выделение чистой культуры производят обычным способом.

Для выделения чистой культуры широко применяют элективные среды. В ряде методов для получения чистых культур используют биологические особенности выделяемог микроба. Например, при выделении спорообразующих бак- терий посевы 10 мин прогревают при 80°С, убивая этим ве- гетативные формы. При выделении возбудителя туберкуле-j за, устойчивого к кислотам и щелочам, с помощью этих ве-1 ществ посевной материал освобождают от сопутствующей! флоры. Для выделения пневмококка и палочки чумы иссле-1 дуемый материал вводят белым мышам - в их организме высокочувствительном к данным возбудителям, эти микро-] бы размножаются быстрее других.

В научно-исследовательской работе, особенно при гене-; тических исследованиях, необходимо получать культуры за-1 ведомо из одной клетки. Такая культура называется «клон»] Для ее получения чаще всего пользуются микроманипуля-^ тором - прибором, снабженным инструментами (иглами] пипетками) микроскопических размеров. С помощью дер-j жателя под контролем микроскопа их вводят в препарат «B сячая капля», извлекают нужную клетку (одну) и переносят ее в питательную среду.

Изучение выделенных культур

Изучение морфологии, подвижности, тинкториальныл свойств, характера роста на средах (культуральные свойства);! ферментативной активности и ряда других особенностей вы! деленного микроба позволяет установить его таксономичес| кое положение, т. е. классифицировать микроорганизм: оп| ределить его род, вид, тип, подтип, разновидность. Это на зывается «идентификацией». Идентификация микроорганиз| мов очень важна при диагностике инфекций, установлена источников и путей ее передачи и в ряде других научно-л тических исследований.