Решение обыкновенных дифференциальных уравнений. Численное решение обыкновенных дифференциальных уравнений Погрешности методов численного решения дифференциальных уравнений




Численное решение дифференциальных уравнений

Многие задачи науки и техники сводятся к решению обыкновенных дифференциальных уравнений (ОДУ). ОДУ называются такие уравнения, которые содержат одну или несколько производных от искомой функции. В общем виде ОДУ можно записать следующим образом:

Где x – независимая переменная, - i-ая производная от искомой функции. n - порядок уравнения. Общее решение ОДУ n–го порядка содержит n произвольных постоянных , т.е. общее решение имеет вид .

Для выделения единственного решения необходимо задать n дополнительных условий. В зависимости от способа задания дополнительных условий существуют два различных типа задач: задача Коши и краевая задача. Если дополнительные условия задаются в одной точке, то такая задача называется задачей Коши. Дополнительные условия в задаче Коши называются начальными условиями. Если же дополнительные условия задаются в более чем одной точке, т.е. при различных значениях независимой переменной, то такая задача называется краевой. Сами дополнительные условия называются краевыми или граничными.

Ясно, что при n=1 можно говорить только о задачи Коши.

Примеры постановки задачи Коши :

Примеры краевых задач :

Решить такие задачи аналитически удается лишь для некоторых специальных типов уравнений.

Численные методы решения задачи Коши для ОДУ первого порядка

Постановка задачи . Найти решение ОДУ первого порядка

На отрезке при условии

При нахождении приближенного решения будем считать, что вычисления проводятся с расчетным шагом , расчетными узлами служат точки промежутка [x 0 , x n ].

Целью является построение таблицы

x i

x n

y i

y n

т.е. ищутся приближенные значения y в узлах сетки.

Интегрируя уравнение на отрезке , получим

Вполне естественным (но не единственным) путем получения численного решения является замена в нем интеграла какой–либо квадратурной формулой численного интегрирования. Если воспользоваться простейшей формулой левых прямоугольников первого порядка

,

то получим явную формулу Эйлера :

Порядок расчетов:

Зная , находим , затем т.д.

Геометрическая интерпретация метода Эйлера :

Пользуясь тем, что в точке x 0 известно решение y (x 0) = y 0 и значение его производной , можно записать уравнение касательной к графику искомой функции в точке :. При достаточно малом шаге h ордината этой касательной, полученная подстановкой в правую часть значения , должна мало отличаться от ординаты y (x 1) решенияy (x ) задачи Коши. Следовательно, точка пересечения касательной с прямой x = x 1 может быть приближенно принята за новую начальную точку. Через эту точку снова проведем прямую , которая приближенно отражает поведение касательной к в точке . Подставляя сюда (т.е. пересечение с прямой x = x 2), получим приближенное значение y (x ) в точке x 2: и т.д. В итоге для i –й точки получим формулу Эйлера.

Явный метод Эйлера имеет первый порядок точности или аппроксимации.

Если использовать формулу правых прямоугольников: , то придем к методу

Этот метод называют неявным методом Эйлера , поскольку для вычисления неизвестного значения по известному значению требуется решать уравнение, в общем случае нелинейное.

Неявный метод Эйлера имеет первый порядок точности или аппроксимации.

В данном методе вычисление состоит из двух этапов:

Данная схема называется еще методом предиктор – корректор (предсказывающее – исправляющее). На первом этапе приближенное значение предсказывается с невысокой точностью (h), а на втором этапе это предсказание исправляется, так что результирующее значение имеет второй порядок точности.

Методы Рунге – Кутта: идея построения явных методов Рунге–Кутты p –го порядка заключается в получении приближений к значениям y (x i +1) по формуле вида

…………………………………………….

Здесь a n , b nj , p n , – некоторые фиксированные числа (параметры).

При построения методов Рунге–Кутты параметры функции (a n , b nj , p n ) подбирают таким образом, чтобы получить нужный порядок аппроксимации.

Схема Рунге – Кутта четвертого порядка точности :

Пример . Решить задачу Коши:

Рассмотреть три метода: явный метод Эйлера, модифицированный метод Эйлера, метод Рунге – Кутта.

Точное решение:

Расчетные формулы по явному методу Эйлера для данного примера:

Расчетные формулы модифицированного метода Эйлера:

Расчетные формулы метода Рунге – Кутта:

y1 – метод Эйлера, y2 – модифицированный метод Эйлера, y3 – метод Рунге Кутта.

Видно, что самым точным является метод Рунге – Кутта.

Численные методы решения систем ОДУ первого порядка

Рассмотренные методы могут быть использованы также для решения систем дифференциальных уравнений первого порядка.

Покажем это для случая системы двух уравнений первого порядка:

Явный метод Эйлера:

Модифицированный метод Эйлера:

Схема Рунге – Кутта четвертого порядка точности:

К решению систем уравнений ОДУ сводятся также задачи Коши для уравнений высших порядков. Например, рассмотрим задачу Коши для уравнения второго порядка

Введем вторую неизвестную функцию . Тогда задача Коши заменяется следующей:

Т.е. в терминах предыдущей задачи: .

Пример. Найти решение задачи Коши :

На отрезке .

Точное решение:

Действительно:

Решим задачу явным методом Эйлера, модифицированным методом Эйлера и Рунге – Кутта с шагом h=0.2.

Введем функцию .

Тогда получим следующую задачу Коши для системы двух ОДУ первого порядка:

Явный метод Эйлера:

Модифицированный метод Эйлера:

Метод Рунге – Кутта:

Схема Эйлера:

Модифицированный метод Эйлера:

Схема Рунге - Кутта:

Max(y-y теор)=4*10 -5

Метод конечных разностей решения краевых задач для ОДУ

Постановка задачи : найти решение линейного дифференциального уравнения

удовлетворяющего краевым условиям:. (2)

Теорема. Пусть . Тогда существует единственное решение поставленной задачи.

К данной задаче сводится, например, задача об определении прогибов балки, которая на концах опирается шарнирно.

Основные этапы метода конечных разностей:

1) область непрерывного изменения аргумента () заменяется дискретным множеством точек, называемых узлами: .

2) Искомая функция непрерывного аргумента x, приближенно заменяется функцией дискретного аргумента на заданной сетке, т.е. . Функция называется сеточной.

3) Исходное дифференциальное уравнение заменяется разностным уравнением относительно сеточной функции. Такая замена называется разностной аппроксимацией.

Таким образом, решение дифференциального уравнения сводится к отысканию значений сеточной функции в узлах сетки, которые находятся из решения алгебраических уравнений.

Аппроксимация производных.

Для аппроксимации (замены) первой производной можно воспользоваться формулами:

- правая разностная производная,

- левая разностная производная,

Центральная разностная производная.

т.е., возможно множество способов аппроксимации производной.

Все эти определения следуют из понятия производной как предела: .

Опираясь на разностную аппроксимацию первой производной можно построить разностную аппроксимацию второй производной:

Аналогично можно получить аппроксимации производных более высокого порядка.

Определение. Погрешностью аппроксимации n- ой производной называется разность: .

Для определения порядка аппроксимации используется разложение в ряд Тейлора.

Рассмотрим правую разностную аппроксимацию первой производной:

Т.е. правая разностная производная имеет первый по h порядок аппроксимации.

Аналогично и для левой разностной производной.

Центральная разностная производная имеет второй порядок аппроксимации .

Аппроксимация второй производной по формуле (3) также имеет второй порядок аппроксимации.

Для того чтобы аппроксимировать дифференциальное уравнение необходимо в нем заменить все производные их аппроксимациями. Рассмотрим задачу (1), (2) и заменим в(1) производные:

В результате получим:

(4)

Порядок аппроксимации исходной задачи равен 2, т.к. вторая и первая производные заменены с порядком 2, а остальные – точно.

Итак, вместо дифференциальных уравнений (1), (2) получена система линейных уравнений для определения в узлах сетки.

Схему можно представить в виде:

т.е., получили систему линейных уравнений с матрицей:

Данная матрица является трехдиагональной, т.е. все элементы, которые расположены не на главной диагонали и двух прилегающих к ней диагоналях равны нулю.

Решая полученную систему уравнений, мы получим решение исходной задачи.

Определение дифференциального уравнения Эйлера. Рассмотрены методы его решения.

Содержание

Дифференциальное уравнение Эйлера - это уравнение вида
a 0 x n y (n) + a 1 x n-1 y (n-1) + ... + a n-1 xy′ + a n y = f(x) .

В более общем виде уравнение Эйлера имеет вид:
.
Это уравнение подстановкой t = ax+b приводится к более простому виду, которое мы и будем рассматривать.

Приведение дифференциального уравнения Эйлера к уравнению с постоянными коэффициентами.

Рассмотрим уравнение Эйлера:
(1) .
Оно сводится к линейному уравнению с постоянными коэффициентами подстановкой:
x = e t .
Действительно, тогда
;
;
;

;
;
..........................

Таким образом, множители, содержащие x m , сокращаются. Остаются члены с постоянными коэффициентами. Однако на практике, для решения уравнений Эйлера, можно применять методы решения линейных ДУ с постоянными коэффициентами без использования указанной выше подстановки.

Решение однородного уравнения Эйлера

Рассмотрим однородное уравнение Эйлера:
(2) .
Ищем решение уравнения (2) в виде
.
;
;
........................
.
Подставляем в (2) и сокращаем на x k . Получаем характеристическое уравнение:
.
Решаем его и получаем n корней, которые могут быть комплексными.

Рассмотрим действительные корни. Пусть k i - кратный корень кратности m . Этим m корням соответствуют m линейно независимых решений:
.

Рассмотрим комплексные корни. Они появляются парами вместе с комплексно сопряженными. Пусть k i - кратный корень кратности m . Выразим комплексный корень k i через действительную и мнимую части:
.
Этим m корням и m комплексно сопряженным корням соответствуют 2 m линейно независимых решений:
;
;
..............................
.

После того как получены n линейно независимых решений, получаем общее решение уравнения (2):
(3) .

Примеры

Решить уравнения:


Решение примеров > > >

Решение неоднородного уравнения Эйлера

Рассмотрим неоднородное уравнение Эйлера:
.
Метод вариации постоянных (метод Лагранжа) также применим и к уравнениям Эйлера.

Сначала мы решаем однородное уравнение (2) и получаем его общее решение (3). Затем считаем постоянные функциями от переменной x . Дифференцируем (3) n - 1 раз. Получаем выражения для n - 1 производных y по x . При каждом дифференцировании члены, содержащие производные приравниваем к нулю. Так получаем n - 1 уравнений, связывающих производные . Далее находим n -ю производную y . Подставляем полученные производные в (1) и получаем n -е уравнение, связывающее производные . Из этих уравнений определяем . После чего интегрируя, получаем общее решение уравнения (1).

Пример

Решить уравнение:

Решение > > >

Неоднородное уравнение Эйлера со специальной неоднородной частью

Если неоднородная часть имеет определенный вид, то получить общее решение проще, найдя частное решение неоднородного уравнения. К такому классу относятся уравнения вида:
(4)
,
где - многочлены от степеней и , соответственно.

В этом случае проще сделать подстановку
,
и решать

Рассматриваем только решение задачи Коши. Система дифференциальных уравнений или одно уравнение должны быть преобразованы к виду

где ,
n -мерные векторы; y – неизвестная вектор-функция; x – независимый аргумент,
. В частности, еслиn = 1, то система превращается в одно дифференциальное уравнение. Начальные условия задаются следующим образом:
, где
.

Если
в окрестности точки
непрерывна и имеет непрерывные частные производные поy , то теорема существования и единственности гарантирует, что существует и при том только одна непрерывная вектор-функция
, определенная внекоторой окрестности точки , удовлетворяющая уравнению (7) и условию
.

Обратим внимание на то, что окрестность точки , где определено решение, может быть весьма малой. При подходе к границе этой окрестности решение может уходить в бесконечность, колебаться, с неограниченно увеличивающейся частотой, в общем, вести себя настолько плохо, что оно не может быть продолжено за границу окрестности. Соответственно, такое решение не может быть отслежено численными методами на большем отрезке, если таковой задан в условии задачи.

Решением задачи Коши на [a ; b ] является функция. В численных методах функция заменяется таблицей (табл. 1) .

Таблица 1

Здесь
,
. Расстояние между соседними узлами таблицы, как правило, берется постоянным:
,
.

Бывают таблицы и с переменным шагом. Шаг таблицы определяется требованиями инженерной задачи и не связан с точностью нахождения решения.

Еслиy – вектор, то таблица значений решения примет вид табл. 2.

Таблица2

В системе MATHCAD вместо таблицы используется матрица, причем она является транспонированной по отношению к указанной таблице.

Решить задачу Коши с точностью ε означает получить в указанной таблице значения (числа или векторы),
, такие, что
, где
– точное решение. Возможен вариант, когда решение на отрезок, заданный в задаче, не продолжается. Тогда нужно ответить, что на всем отрезке задача не может быть решена, и нужно получить решение на отрезке, где оно существует, сделав этот отрезок по возможности больше.

Следует помнить, что точное решение
нам не известно (иначе зачем применять численный метод?). Оценка
должна быть обоснована из каких-то других соображений. Как правило, стопроцентной гарантии, что оценка выполняется, получить не удается. Поэтому используются алгоритмы оценки величины
, которые оказываются эффективными в большинстве инженерных задач.

Общий принцип решения задачи Коши следующий. Отрезок [a ; b ] разбивается на ряд отрезков узлами интегрирования . Число узловk не обязано совпадать с числом узлов m итоговой таблицы значений решений (табл.1,2). Как правило, k > m . Для простоты расстояние между узлами будем считать постоянным,
;h называется шагом интегрирования. Затем, по определенным алгоритмам, зная значения приi < s , вычисляем значение . Чем меньше шагh , тем меньше значение будет отличаться от значения точного решения
. Шагh в этом разбиении уже определяется не по требованиям инженерной задачи, а по требуемой точности решения задачи Коши. Кроме того, он должен выбираться так, чтобы на одном шаге табл. 1, 2 укладывалось целое число шагов h . В этом случае значения y , полученные в результате счета с шагом h в точках
, используются соответственно в табл. 1 или 2.

Простейшим алгоритмом решения задачи Коши для уравнения (7) является метод Эйлера. Формула расчета такова:

(8)

Посмотрим, как оценивается точность находимого решения. Предположим, что
– точное решение задачи Коши, а также, что
, хотя это почти всегда не так. Тогда, где константаC зависит от функции
в окрестности точки
. Таким образом, на одном шаге интегрирования (нахождения решения) мы получаем ошибку порядка. Так как шагов приходится сделать
, то естественно ожидать, что суммарная ошибка в последней точке
будет порядка
, т.е. порядкаh . Поэтому метод Эйлера называют методом первого порядка, т.е. ошибка имеет порядок первой степени шага h . В действительности же на одном шаге интегрирования можно обосновать следующую оценку. Пусть
– точное решение задачи Коши с начальным условием
. Ясно, что
не совпадает с искомым точным решением
исходной задачи Коши уравнения (7). Однако при малыхh и «хорошей» функции
эти два точных решения будут отличаться мало. Формула остаточного члена формулы Тейлора гарантирует, что
, это и дает ошибку шага интегрирования. Итоговая ошибка складывается не только из ошибок на каждом шаге интегрирования, но и из отклонений искомого точного решения
от точных решений
,
, причем эти отклонения могут становиться очень большими. Однако итоговая оценка ошибки в методе Эйлера при «хорошей» функции
все равно имеет вид
,
.

При применении метода Эйлера счет идет следующим образом. По заданной точности ε определяем ориентировочно шаг
. Определяем число шагов
и снова ориентировочно выбираем шаг
. Затем опять корректируем его в сторону уменьшения, чтобы на каждом шаге табл. 1 или 2 укладывалось целое число шагов интегрирования. Получаем шагh . По формуле (8), зная и, находим. По найденному значениюи
находими так далее.

Полученный результат может не иметь желаемой точности, и, как правило, не будет ее иметь. Поэтому уменьшаем шаг в два раза и снова применяем метод Эйлера. Сравниваем результаты первого применения метода и второго в одинаковых точках . Если все расхождения меньше заданной точности, то можно считать последний результат счета ответом к задаче. Если нет, то шаг снова уменьшаем вдвое и еще раз применяем метод Эйлера. Теперь сравниваем результаты последнего и предпоследнего применения метода и т.д.

Метод Эйлера применяется сравнительно редко из-за того, что для достижения заданной точности ε требуется выполнить большое число шагов, имеющее порядок
. Однако если
имеет разрывы или разрывные производные, то методы более высоких порядков будут давать такую же ошибку, как и метод Эйлера. То есть потребуется такой же объем вычислений, как и в методе Эйлера.

Из методов более высоких порядков чаще других используется метод Рунге – Кутты четвертого порядка. В нем вычисления ведутся по формулам

Этот метод при наличии непрерывных четвертых производных у функции
дает ошибку на одном шаге порядка, т.е. в обозначениях, введенных выше,
. В целом на отрезке интегрирования при условии, что точное решение определено на этом отрезке, ошибка интегрирования будет иметь порядок.

Выбор шага интегрирования происходит так же, как было описано в методе Эйлера, за исключением того, что первоначально ориентировочное значение шага выбирается из соотношения
, т.е.
.

В большей части программ, применяемых для решения дифференциальных уравнений, используется автоматический выбор шага. Суть его такова. Пусть уже вычислено значение . Вычисляется значение
с шагомh , выбранном при вычислении . Затем выполняются два шага интегрирования с шагом, т.е. добавляется лишний узел
в середине между узламии
. Вычисляются два значения
и
в узлах
и
. Вычисляется величина
, гдеp – порядок метода. Если δ меньше точности, заданной пользователем, то полагают
. Если нет, то выбирают новый шагh равным и повторяют проверку точности. Если же при первой проверкеδ много меньше заданной точности, то делается попытка увеличить шаг. Для этого вычисляется
в узле
с шагомh из узла
и вычисляется
с шагом 2h из узла . Вычисляется величина
. Еслименьше заданной точности, то шаг 2h считается приемлемым. В этом случае назначают новый шаг
,
,
. Еслибольше точности, то шаг оставляют прежним.

Нужно учесть, что программы с автоматическим выбором шага интегрирования добиваются достижения заданной точности лишь при выполнении одного шага. Это происходит за счет точности аппроксимации решения, проходящего через точку
, т.е. аппроксимации решения
. Такие программы не учитывают, насколько решение
отличается от искомого решения
. Поэтому нет гарантии, что на всем отрезке интегрирования заданная точность будет достигнута.

Описанные методы Эйлера и Рунге – Кутты относятся к группе одношаговых методов. Это означает, что для вычисления
в точке
достаточно знать значениев узле. Естественно ожидать, что если используется больше информации о решении, учитываются несколько предыдущих его значений
,
и т.д., то новое значение
можно будет найти точнее. Такая стратегия используется в многошаговых методах. Для их описания введем обозначение
.

Представителями многошаговых методов служат методы Адамса – Башфорта:


Метод k -го порядка дает локальную погрешность порядка
или глобальную – порядка.

Указанные методы относятся к группе экстраполяционных, т.е. новое значение явно выражается через предыдущие. Другой тип – интерполяционные методы. В них на каждом шаге приходится решать нелинейное уравнение относительно нового значения . В качестве примера возьмем методы Адамса –Моултона:


Для применения этих методов в начале счета нужно знать несколько значений
(их число зависит от порядка метода). Эти значения нужно получить другими методами, например методом Рунге – Кутты с маленьким шагом (для повышения точности). Интерполяционные методы во многих случаях оказываются более устойчивыми и позволяют делать бόльшие шаги, чем экстраполяционные.

Чтобы не решать в интерполяционных методах нелинейное уравнение на каждом шаге, применяют предиктор-корректорные методы Адамса. Суть заключается в том, что сначала применяется на шаге экстраполяционный метод и полученное значение
подставляется в правую часть интерполяционного метода. Например, в методе второго порядка

Для решения дифференциальных уравнений необходимо знать значение зависимой переменной и ее производных при некоторых значениях независимой переменной. Если дополнительные условия задаются при одном значении неизвестной, т.е. независимой переменной., то такая задача называется задачей Коши. Если начальные условия задаются при двух или более значениях независимой переменной, то задача называется краевой. При решении дифференциальных уравнений различных видов, функция, значения которой требуется определить вычисляется в виде таблицы.

Классификация численных методов для решения дифр. Ур. Типов.

Задача Коши – одношаговые: методы Эйлера, методы Рунге- Кутта; – многошаговые: метод Майна, Метод Адамса. Кроевая задача – метод сведения кроевой задачи к задаче Коши; –метод конечных разностей.

При решении задачи Коши должны быть заданы дифр. ур. порядка n или система дифр. ур. первого порядка из n уравнений и n дополнительных условий для ее решения. Дополнительные условия должны быть заданы при одном и том же значении независимой переменной. При решении кроевой задачи должны быть заданы ур. n-ого порядка или система из n уравнений и n дополнительных условий при двух или более значениях независимой переменной. При решении задачи Коши искомая функция определяется дискретно в виде таблицы с некоторым заданным шагом . При определении каждого очередного значения можно использовать информацию об одной предыдущей точке. В этом случае методы называют одношаговым, либо можно использовать информацию о нескольких предыдущих точках – многошаговые методы.

Обыкновенные дифференциальные ур. Задача Коши. Одношаговые методы. Метод Эйлера.

Задано: g(x,y)y+h(x,y)=0, y=-h(x,y)/g(x,y)= f(x,y), x 0 , y(x 0)=y 0 . Известно: f(x,y), x 0 , y 0 . Определить дискретное решение: x i , y i , i=0,1,…,n. Метод Эйлера основан на разложении функции в ряд Тейлора окрестности точки x 0 . Окрестность описывается шагом h. y(x 0 +h)y(x 0)+hy(x­ 0)+…+ (1). В методе Эйлера учитываются только два слагаемых ряда Тейлора. Введем обозначения. Формула Эйлера примет вид: y i+1 =y i +y i , y i =hy(x i)=hf(x i ,y i), y i+1 =y i +hf(x i ,y i) (2), i=0,1,2…, x i+1 =x i +h

Формула (2) является формулой простого метода Эйлера.

Геометрическая интерпретация формулы Эйлера

Для получения численного решения используется ф-ла касательной, проходящей через урав. касательной: y=y(x 0)+y(x 0)(x-x ­0), x=x 1 ,

y 1 =y(x 0)+f(x 0 ,y 0)  (x-x 0), т.к.

x-x 0 =h, то y 1 =y 0 +hf(x 0 ,y 0), f(x 0 ,y 0)=tg £.

Модифицированный метод Эйлера

Задано: y=f(x,y), y(x 0)=y 0 . Известно: f(x,y), x 0 , y 0 . Определить: зависимость y от x в виде табличной дискретной функции: x i , y i , i=0,1,…,n.

Геометрическая интерпертация

1) вычислим тангенс угла наклона в начальной точке

tg £=y(x n ,y n)=f(x n ,y n)

2) Вычислим значение  y n+1 на

конце шага по формуле Эйлера

 y n+1 =y n +f(x n ,y n) 3) Вычислим тангенс угла наклона

касательной в n+1 точке: tg £=y(x n+1 ,  y n+1)=f(x n+1 ,  y n+1) 4) Вычислим среднее арифметическое углов

наклона: tg £=½. 5) Используя тангенс угла наклона пересчитаем значение функции в n+1 точке: y n+1 =y n +htg £= y n +½h=y n +½h – формула модифицированного метода Эйлера. Можно показать, что полученная ф-ла соответствует разложению ф-ии в ряд Тейлора, включая слагаемы (до h 2). Модифицированный метод Эйлнра в отличии от простого является методом вторго порядка точности, т.к. погрешность пропорциональна h 2 .

Обыкновенными дифференциальными уравнениями называются такие уравнения, которые содержат одну или несколько производных от искомой функции y=y (x). Их можно записать в виде

Где х - независимая переменная.

Наивысший порядок n входящей в уравнение производной называется порядком дифференциального уравнения.

Методы решения обыкновенных дифференциальных уравнений можно разбить на следующие группы: графические, аналитические, приближенные и численные.

Графические методы используют геометрические построения.

Аналитические методы встречаются в курсе дифференциальных уравнений. Для уравнений первого порядка (с разделяющимися переменными, однородных, линейных и др.), а также для некоторых типов уравнений высших порядков (например, линейных с постоянными коэффициентами) удается получить решения в виде формул путем аналитических преобразований.

Приближенные методы используют различные упрощения самих уравнений путем обоснованного отбрасывания некоторых содержащихся в них членов, а также специальным выбором классов искомых функций.

Численные методы решения дифференциальных уравнений в настоящее время являются основным инструментом при исследовании научно-технических задач, описываемых дифференциальными уравнениями. При этом необходимо подчеркнуть, что данные методы особенно эффективны в сочетании с использованием современных компьютеров.

Простейшим численным методом решения задачи Коши для ОДУ является метод Эйлера. Рассмотрим уравнение в окрестностях узлов (i=1,2,3,…) и заменим в левой части производную правой разностью. При этом значения функции узлах заменим значениями сеточной функции:

Полученная аппроксимация ДУ имеет первый порядок, поскольку при замене на допускается погрешность.

Заметим, что из уравнения следует

Поэтому представляет собой приближенное нахождение значение функции в точке при помощи разложения в ряд Тейлора с отбрасыванием членов второго и более высоких порядков. Другими словами, приращение функции полагается равным её дифференциалу.

Полагая i=0, с помощью соотношения находим з значение сеточной функции при:

Требуемое здесь значение задано начальным условием, т.е.

Аналогично могут быть найдены значения сеточной функции в других узлах:

Построенный алгоритм называется методом Эйлера

Рисунок - 19 Метод Эйлера

Геометрическая интерпретация метода Эйлера дана на рисунке. Изображены первые два шага, т.е. проиллюстрировано вычисление сеточной функции в точках. Интегральные кривые 0,1,2 описывают точные решения уравнения. При этом кривая 0 соответствует точному решению задачи Коши, так как она проходит через начальную точку А (x 0 ,y 0). Точки B,C получены в результате численного решения задачи Коши методом Эйлера. Их отклонения от кривой 0 характеризуют погрешность метода. При выполнении каждого шага мы фактически попадаем на другую интегральную кривую. Отрезок АВ - отрезок касательной к кривой 0 в точке А, ее наклон характеризуется значением производной. Погрешность появляется потому, что приращение значения функции при переходе от х 0 к х 1 заменяется приращением ординаты касательной к кривой 0 в точке А. Касательная ВС уже проводится к другой интегральной кривой 1. таким образом, погрешность метода Эйлера приводит к тому, что на каждом шаге приближенное решение переходит на другую интегральную кривую.