Термодинамические условия равновесия. Критерии направления самопроизвольно протекающих процессов. Энтальпийный и энтропийный факторы. Критерии оценки направления самопроизвольного протекания процессов Критерий самопроизвольного протекания процесса в откры




Визолированных системах отсутствует подвод теплоты из внешней среды (Q = 0), поэтому, согласно II закону термодинамики (2), в изолированной системе энтропия либо остается постоянной в состоянии равновесия, либо возрастает при необратимом (самопроизвольном) течении процесса. Рост энтропии продолжается до установления равновесного состояния, при этом значение энтропии максимально S max (рисунок).

Расчет изменения энтропии при фазовом переходе,

нагревании (охлаждении), при протекании химической реакции

Для реальных (необратимых) процессов II закон термодинамики записывается в идее неравенства, что затрудняет расчет изменения энтропии S при их протекании. Но энтропия – функция состояния системы, и ее изменение не зависит от пути проведения процесса. Поэтому для расчета S при протекании различных процессов воспользуемся уравнением II закона для обратимых процессов:

. (1)

Изменение энтропии при фазовых превращениях

Фазовое превращение (фазовый переход) – процесс, связанный с изменением агрегатного состояния вещества.

Характерной особенностью этих процессов является то, что они протекают при постоянной температуре – температуре фазового перехода Т ф.п. .

Тогда, согласно II закону термодинамики

,

где Q ф.п . – тепловой эффект фазового перехода.

При р = const теплота равна изменению энтальпии:

Изменение энтропии при нагревании (охлаждении).

Применим уравнение (1) к изобарному процессу (р = const ).

Для 1 моль вещества

;

,

где С р – молярная изобарная теплоемкость вещества, Дж/(мольK).

Проинтегрируем последнее уравнение в определенных пределах (при изменении температуры от Т 1 до Т 2):

. (2)

Если в исследуемом температурном интервале теплоемкость мало зависит от температуры, т.е. можно использовать среднюю изобарную теплоемкость , то решение уравнения (2) имеет вид:

. (3)

Изменение энтропии в ходе химической реакции (при Т = const ) .

Так как энтропия – функция состояния, то ее изменение в ходе химической реакции можно рассчитать по уравнению:

, (4)

где S j , S i – энтропии продуктов реакции и исходных веществ соответственно при температуре реакции; j , i – стехиометрические коэффициенты.

В справочной литературе приведены стандартные энтропии веществ при температуре 298 К.

Если реакция протекает при температуре, отличной от 298 К, то энтропию вещества рассчитывают по уравнению (3), приняв для удобства за Т 1 температуру 298, а за Т 2 – температуру реакции:

, (5)

где S – изменение энтропии вещества при нагревании (или охлаждении) вещества от 298 К до температуры Т .

После подстановки (5) в формулу (4) для каждого участника реакции получим формулу для расчета изменения энтропии в ходе реакции, протекающей при температуре Т :

,

где
– разность между изобарными теплоемкостями продуктов реакции и исходных веществ с учетом стехиометрических коэффициентов.

Термодинамические потенциалы

и направление самопроизвольных процессов

Изменение энтропии однозначно определяет направление и предел самопроизвольного протекания процесса только для изолированных систем: если в результате расчета окажется, что S > 0, процесс пойдет самопроизвольно, при S = 0 – состояние равновесия, если S < 0, процесс самопроизвольно протекать не будет.

На практике приходится иметь дело преимущественно с системами, взаимодействующими с окружающей средой. В качестве критерия оценки направления самопроизвольных процессов в таких системах используются термодинамические потенциалы.

Термодинамическим потенциалом называют функцию состояния, убыль которой в обратимо протекающем процессе при постоянстве определенных параметров равна максимальной полезной работе.

Наибольшее значение имеют два основных термодинамических потенциала: энергия Гельмгольца F (T , V ) и энергия Гиббса G (T , p ). В скобках указаны параметры, функциями которых являются термодинамические потенциалы.

Чтобы получить представление о термодинамических потенциалах, воспользуемся объединенным математическим выражением первого и второго законов термодинамики.

I закон термодинамики:

II закон термодинамики:

или
.

Объединенное математическое выражение:

Рассмотрим соответствующие процессы.

1. Изобарно-изотермический процесс (p , T = const ).

Уравнение (6) запишется (из математики: любую константу можно внести под знак дифференциала, а сумма дифференциалов равна дифференциалу от суммы )

,

,

где H TS = G –свободная энергия Гиббса. При p , T = const изменение энергии Гиббса связано с выполнением полезной работы:

.

В обратимо протекающем процессе
. Тогда

,

.

Таким образом, свободная энергия Гиббса является изобарно-изотермическим потенциалом , так как ее уменьшение характеризует максимальную работу этого процесса.

Если единственным видом работы является работа расширения (сжатия), т.е.
, то в необратимом, а, следовательно,самопроизвольно протекающем процессе

. (7)

2. Изохорно-изотермический процесс (V , T = const , pdV = 0).

Уравнение (6) примет вид

,

где U TS = F – свободная энергия Гельмгольца. При V , T = const изменение энергии Гельмгольца связано с выполнением полезной работы:

.

В обратимо протекающем процессе

,

.

Таким образом, свободная энергия Гельмгольца является изохорно-изотермическим потенциалом .

Если
, то в самопроизвольно протекающем процессе

. (8)

Неравенства (7), (8) являются условием самопроизвольного протекания процесса при постоянстве соответствующих параметров : самопроизвольно могут протекать только те процессы, которые приводят к понижению свободной энергии системы; система приходит в состояние равновесия, когда свободная энергия достигает минимального значения.

Самопроизвольно могут протекать реакции, сопровождающиеся не только выделением, но и поглощением теплоты.

Реакция, идущая при данной температуре с выделением теплоты, при другой температуре идет в обратном направлении, т.е. с поглощением теплоты. Здесь проявляется диалектический закон единства и борьбы противоположностей. С одной стороны, система стремится к упорядочению (агрегации), уменьшению Н, с другой стороны, система стремится к беспорядку (дезагрегации). Первая тенденция растет с понижением температуры, вторая растет с повышением температуры. Тенденцию к беспорядку характеризует величина, которую называют энтропией.

Энтропия (S ), так же как и внутренняя энергия (U ), энтальпия (H ), объем(V ) и др., является свойством вещества, пропорциональным его количеству. S , U , H , V обладают аддитивными свойствами, т.е. при соприкосновении систем суммируются. Энтропия отражает движение частиц вещества и является мерой неупорядоченности системы . Она возрастает с увеличением движения частиц: при нагревании, испарении, плавлении, расширении газа, при ослаблении или разрыве связей между атомами и т.п. Процессы, связанные с упорядоченностью системы: конденсация, кристаллизация, сжатие, упрочнение связей, полимеризация и т. п. – ведут к уменьшению энтропии. Энтропия является функцией состояния, т.е. ее изменение (S ) зависит только от начального (S 1) и конечного (S 2) состояния и не зависит от пути процесса S = S 2 – S 1 .

Если S 2 > S 1 , то S > 0.

Если S 2 < S 1 , то S < 0.

Так как энтропия растет с повышением температуры, то можно считать, что мера беспорядка T S . Энтропия выражается в Дж/моль град . Таким образом, дви­жущая сила процесса складывается из двух сил: стремление к упорядочению (Н ) и стремление к беспорядку (TS ). При p = const и Т = const общую движущую силу процесса, которую обозначают G , можно найти из соотношения

G = (Н 2 – Н 1) – (TS 2 – TS 1) = H T S ;

G = H T S .

Величина G называется изобарно- изотермическим потенциалом или энергией Гиббса. Итак, мерой химического сродства является убыль G потенциала или G , которая зависит от природы вещества, его количества и от температуры. Энергия Гиббса является функцией состояния, поэтому

G x .р. = G G .

Самопроизвольно протекающие процессы идут в сто­рону уменьшения любого потенциала и, в частности, в сторону уменьшения G. , Если G < 0, процесс принци­пиально осуществим, если G > 0 – процесс самопроизвольно проходить не может. Чем меньше G , тем сильнее стремление к протеканию данного процесса и тем даль­ше он от состояния равновесия, при котором G = 0 и H = T S .

Из соотношения G = H T S видно, что самопроизвольно могут протекать и процессы, для которых H > 0 (эндотермические). Это возможно, когда S > 0, но | T S | > |H |, и тогда G < 0. С другой стороны, экзотермические реакции (H < 0) самопроизвольно не протекают, если при S < 0 окажется, что G > 0.

Таблица 2

Стандартные изобарные потенциалы образования

G 0 298 некоторых веществ

Вещество

Состояние

G 0 298,

кДж/моль

Вещество

Состояние

G 0 298,

кДж/моль

Пример 1. Что имеет большую энтропию: 1 моль кристаллического вещества или 1 моль его паров при той же температуре?

Решение. Энтропия есть мера неупорядоченного состояния вещества. В кристалле частицы (атомы, ионы) имеют упорядоченное расположение и могут находиться лишь в некоторых точках пространства, а для газа таких ограничений нет. 1 моль газа имеет гораздо больший объем, чем 1 моль кристалла, и возможность хаотичного движения молекул газа больше. А так как энтропию можно рассматривать как количественную меру хаотичности атомно-молекулярной структуры вещества, то энтропия моля паров вещества больше энтропии моля его кристаллов при одинаковой температуре.

Пример 2. Прямая или обратная реакция будет протекай при стандартных условиях в системе

СН 4(г) + СО 2(г) ⇄ 2СО (г) +2Н 2(г) ;

Решение. Для ответа на вопрос следует вычислить G 0 298 прямой реакции. Значения G 0 298 соответствую­щих веществ даны в табл. 2. Зная, что G есть функция состояния и что G для простых веществ, находящихся в агрегатных состояниях, устойчивых при стандартных условиях, равны нулю, находим G 0 298 процесса:

G 0 298 = 2(–137,27) + 2 (0) – (–50.79 – 394,38) = +170,63 кДж .

То, что G 0 298 > 0, указывает на невозможность само­произвольного протекания прямой реакции при Т = 298 К и равенстве давлений взятых газов 101,3 кПа .

В гл. 9, посвященной энтропии, установлено, что критерием протекания самопроизвольного процесса в изолированной системе является возрастание энтропии. На практике изолированные системы встречаются не часто. Здесь следует сделать одно замечание. Если ограничиться нашей планетой, то она представляет собой достаточно хорошо изолированную систему, и большинство процессов на планете можно рассматривать как протекающими в изолированной системе. Поэтому самопроизвольные процессы идут в сторону возрастания энтропии всей планеты, и именно возрастанием энтропии планеты и характеризуются все самопроизвольные процессы на Земле. Можно, конечно, использовать принцип возрастания энтропии Земли в качестве критерия направленности конкретного рассматриваемого процесса. Однако это очень неудобно, так как придется учитывать энтропию планеты в целом.

На практике чаще имеют дело с закрытыми системами. При анализе самопроизвольных процессов в закрытых системах также можно применить принцип возрастания энтропии.

Рассмотрим реакцию, протекающую в закрытой системе. Закрытая система представляет собой реактор, окруженный термостатом.

Будем полагать, что вся система «реактор + термостат» отделена от окружающей среды изолирующей оболочкой. Как известно, энтропия любой изолированной системы по мере протекания самопроизвольного процесса может только расти. В рассматриваемом случае энтропия представляет собой сумму двух слагаемых - энтропии реакционной системы внутри реактора (А,) и энтропии термостата (А 2). Тогда для изменения энтропии системы в целом можно записать

Предположим, что реакция протекает в условиях постоянного давления и постоянной температуры с выделением теплоты. Постоянство температуры реактора поддерживается хорошей теплопроводностью стенок реактора и большой тепловой емкостью термостата. Тогда теплота, выделяемая в ходе реакции (-АЯ,), поступает из реактора к термостату и

Подставляя величину AS 2 в предыдущее уравнение, получаем

Таким образом, применяя к закрытой системе вместе с термостатом общий принцип возрастания энтропии в изолированной системе при протекания в ней необратимого процесса, получаем простой критерий, который определяет протекание необратимого процесс в закрытой системе (нижний индекс 1 опущен для общности):

В равновесии функция Гиббса закрытой системы достигает минимума, в котором

Выражение (11.25) представляет собой условие равновесия любых закрытых термодинамических систем. Отметим, что стремление системы к равновесию, описываемое уравнением типа (11.24), нельзя объяснять через существование некой «движущей силы». Никаких «движущих сил», аналогичных силам в механике Ньютона, в химических процессах не существует. Химическая система вместе с окружением стремится занять наиболее вероятное состояние из всех возможных, что математически и описывает энтропия полной системы, стремящаяся к максимуму. Таким образом, изотермическое изменение функции Гиббса для закрытой системы, взятое с обратным знаком и поделенное на температуру (-АG/T) - выражение (10.47), представляет собой изменение энтропии полной изолированной системы («термодинамическая система + окружение»), в качестве которой может рассматриваться созданная человеком изолированная система («закрытая система + термостат»), «закрытая система + планета Земля» или «закрытая система + вся Вселенная». Заметим, что во всех обратимых процессах, протекающих при постоянных значениях Тир, изменение фундаментальных функций и энтропии системы вместе с окружением равно нулю на любой стадии процесса.

Итак, в закрытой системе самопроизвольное протекание химического процесса при постоянных значениях температуры и давления, обязательно сопровождается уменьшением функции Гиббса. Реакции, характеризующиеся возрастанием функции Гиббса, самопроизвольно не происходят. Если процесс сопровождается возрастанием функции Гиббса, то его можно осуществить, в большинстве случаев, с совершением работы. Действительно, проведем процесс обратимым путем, но в обратном направлении с уменьшением функции Гиббса. В этом случае будет произведена работа в окружающей среде, которая может быть запасена в виде потенциальной энергии. Если теперь попытаться провести процесс в исходном направлении с возрастанием функции Гиббса, то в обратимом процессе необходимо будет использовать запасенную потенциальную энергию. Следовательно, без совершения работы обратимый процесс, происходящий с возрастанием функции Гиббса, осуществить невозможно.

Тем не менее, можно провести реакцию, в которой происходит возрастание функции Гиббса, и без совершения работы. Но тогда необходимо обеспечить сопряжение невыгодной реакции (AG > 0) с выгодной (AG

Такие процессы очень часто встречаются в биохимических системах, в которых в роли энергодонорной реакции участвует реакция гидролиза аденозинтрифосфорной кислоты (АТФ). Благодаря сопряжению протекают многие химические и биохимические реакции. Тем не менее, механизм этого сопряжения не столь прост, как это могло бы следовать из вышеприведенной схемы. Отметим, что реакции, в которых участвуют реагенты А и С, независимы. Поэтому протекание реакции С -» D никак не может повлиять на реакцию А -> В. Иногда можно встретить утверждение, что такое сопряжение способно увеличить константы равновесия невыгодных реакций и увеличивать выход продуктов в невыгодных реакциях. Действительно, сложив формально одну реакцию А -» В с некоторым числом (п ) реакций С -> D можно получить сколь угодно большую по величине константу равновесия реакции А + пС -» В + nD . Однако равновесное состояние системы не может зависеть от формы записи химических уравнений, несмотря на суммарное отрицательное изменение функции Гиббса. Поэтому, в сложных системах величины констант равновесия в большинстве случаев не позволяют без проведения расчетов судить о равновесном состоянии. Необходимо иметь в виду, что константы равновесия определяются только структурой участвующих в реакции веществ, и они не зависят от присутствия или реакций других соединений. Простое сложение реакций, несмотря на значительное увеличение констант равновесия, не приводит к увеличению выхода продуктов в равновесной ситуации .

Положение спасает участие в процессе промежуточных продуктов, например,

Но участие промежуточных продуктов не меняет равновесный состав и выход продукта В (предполагается, что равновесное количество промежуточного продукта АС мало). Увеличение количества продукта В можно ожидать только на начальных стадиях процесса, далеких от равновесного состояния благодаря достаточно быстрым реакциям с участием промежуточных продуктов .

Литература

  • 1. Степин Б.Д. Применение международной системы единиц физических величин в химии. - М.: Высшая школа, 1990.
  • 2. Карапетъянц М.Х. Химическая термодинамика. - М.: Химия, 1975.
  • 3. N. Bazhin. The Essence of ATP Coupling. International Scholarly Research Network, ISRN Biochemistry, v. 2012, Article ID 827604, doi: 10.5402/2012/827604
  • а) В изолированной системе самопроизвольно идут только процессы с увеличением энтропии. S > 0 - процесс возможен, S
  • б) Там, где возможен теплообмен с окружающей средой, это уже не совсем верно. Возможны экзотермические процессы с уменьшением S, например, кристаллизация жидкости, конденсация пара. Поэтому первоначально был введен критерий Бертло: самопроизвольно идут только экзотермические процессы, то есть процессы с уменьшением U или H. Этот критерий при низких температурах оправдывается часто. Действительно, потерять энергию проще, чем приобрести. Простая механическая аналогия: предмет на столе имеет большую потенциальную энергию, чем на полу, скатиться и упасть на пол он может самопроизвольно, но не может сам заскочить с пола на стол. Но все же и этот критерий не совсем верен. Возможны и эндотермические процессы, например, испарение жидкости.

Одновременно действуют обе тенденции - и стремление к минимуму энергии (U или H), и стремление к максимуму беспорядка (S). Нужны критерии, учитывающие сразу обе тенденции. Такими критериями являются:

энергия Гельмгольца F = U - TS для изохорно-изотермических процессов и энергия Гиббса G = H - TS = U + pV - TS = F + pV - для изобарно-изотермических.

В старой литературе их еще называют термодинамическими потенциалами (изохорно-изотермическим и изобарно-изотермическим), а также свободными энергиями Гельмгольца и Гиббса.

Тут более прямая аналогия с механической потенциальной энергией: макротела самопроизвольно скатываются в яму, к минимуму потенциальной энергии, а физико-химические системы - к минимуму термодинамического потенциала.

В изохорно-изотермических условиях самопроизвольно идут только процессы с уменьшением F: F < 0 - процесс возможен, F > 0 - процесс невозможен. Когда F достигает минимума - наступает равновесие.

Аналогично, в изобарно-изотермических условиях самопроизвольно идут только процессы с уменьшением G.

G = H - TS < 0 - условие самопроизвольного протекания процесса в изобарно-изотермических условиях. Возможны четыре варианта (рис. 5):

  • 1) Н > 0, S

Если Т 0, то G Н и справедлив принцип Бертло. В данном случае прямой процесс может идти, обратный - нет.

Если Т, то G -TS, и направление процесса определяется ростом энтропии. В данном случае может идти только обратный процесс.

4) Н < 0, S < 0. Случай, обратный предыдущему. Процесс идёт самопроизвольно лишь при высоких температурах.

Но где граница между “низкими” и “высокими” температурами? Это зависит от соотношения H и S. Температура, при которой равновероятны прямой и обратный процессы (G = 0): Т 0 = Н/S.

Ниже этой температуры равновесие смещается в сторону протекания экзотермической реакции, выше - в сторону эндотермической. В качественной форме это известно как частный вариант принципа Ле Шателье. Очевидно, что при разных знаках Н и S такой температуры не может быть.

Демонстрация: обратимое разложение NH 4 Cl NH 3 + HCl и необратимое (NH 4) 2 Сr 2 O 7 N 2 + Cr 2 O 3 + 2H 2 O. Знак S очевиден по выделению газов, знак H во втором случае также очевиден - саморазогрев.

Вопрос. Как изменяются H, S и G при реакции BaCl 2 (p-p) + H 2 SO 4 (p-p) > BaSO 4 (тв.) + 2HCl(p-p) в изобарно-изотермических условиях? в изолированной системе? Процесс идет самопроизвольно, значит в изобарно-изотермических условиях G < 0. Но образование кристаллов позволяет утверждать, что S < 0. Тогда однозначно Н < 0. Будет ли Н < 0 в изолированной системе? Нет, Н = 0, т.к. нет теплообмена.

Система не может отдать тепло в окружающую среду, поэтому температура повышается. Но если процесс идет самопроизвольно, значит S > 0. Но может ли кристаллизация идти с ростом энтропии?

Кристаллизация - вряд ли, но раствор-то нагрелся, и рост его энтропии перевесил убыль энтропии от кристаллизации. Здесь G = - ТS < 0.

Для F, G и S, как и для U, H, справедлив закон Гесса.

Рассматривая самопроизвольно протекающие процессы, мы выявили:

1) закономерность в соответствии со 2-м началом термодинамики их протекания с возрастанием энтропии.

2) закономерность самопроизвольного протекания экзотермических реакций, которые протекают с понижением энтропии.

Например, самопроизвольно протекает процесс испарения (эндотермический процесс с возрастанием энтропии), в котором хаос в окружающей среде уменьшается, но возрастает внутри самой системы. С другой стороны, вышеописанная экзотермическая реакция получения ам-миака протекает с понижением энтропии – образуется более сложная, упорядоченная структура, к тому же из 4 молекул газа образуется 2. Как уже говорилось выше, неподчинения 2-му закону термодинамики здесь нет, просто понижение энтропии в реакции компенсируется значительно большим выбросом тепловой энергии в окружающую среду и соответственно большим мировым беспорядком.

Однако желательно иметь некий критерий, позволяющий количественно

прогнозировать возможность протекания самопроизвольных процессов

Таким критерием является G - свободная энергия Гиббса (свободная энтальпия или изобарный потенциал), который выводится из равенства

H=G+TS или

Н, Т и S - соответственно энтальпия, температура и энтропия.

Изменение свободной энергии Гиббса

DG = DH - TDS

В первом равенстве энтальпия (внутренняя энергия) складывается из сво-бодной энергии G и связанной энергии TS.

Свободная энергия G представляет собой ту часть общего запаса вну-тренней энергии, которая может быть целиком превращена в работу (это технически ценная часть внутренней энергии).

Связанная энергия TS , в свою очередь, представляет собой остальную часть внутренней энергии системы. Связанная энергия не может быть пре-вращена в работу. Она способна переходить только в тепловую энергию, в виде которой рассеивается (диссипируется).

Свободная энергия заключается в системе в виде потенциальной энергии. Она убывает по мере совершения работы системой. Так, например, более разреженный газ при той же температуре и той же внутренней энергии со-держит меньше свободной энергии и больше связанной, чем сжатый газ. Это вполне понятно, так как во втором случае мы можем получить работы больше, чем в первом.

Но поскольку G убывает, то эта убыль DG = G 2 – G 1 выражается знаком минус, поскольку энергия второй системы ниже, чем в первой

На основании изложенного можно формулировать следующий принцип минимума свободной энергии:

В изолированной системе самопроизвольно протекают только про-цессы, направленные в сторону понижения свободной энергии системы.

Что выражают эти функции?

По величине DG можно судить о принципиальной возможности про-текания реакции. Если DG = 0, то происходит равновесная реакция, направ-ление которой определяется только концентрацией отдельных её компо-нентов. Если DG < 0, то реакция идёт спонтанно с выделением энергии в форме полезной работы (или более упорядоченной химической структуры). Если DG > 0, то изменение состояния системы происходит только при за-трате работы извне.

II начало термодинамики можно распространить и на общественные процессы, но следует помнить, что этот метод рассмотрения поведения общества будет носить философский, познавательный характер, и не претендует на строгую научность.

Рассмотрим, например, проблему, непосредственно касающуюся юристов - проблему роста преступности и борьбы с ним.

Напомню формулы 1 закона: DН = Q – A и изменение свободной энергии Гиббса DG = DH - TDS

Или DH = DG + TDS

Предположим, что начальный уровень преступности есть Н 1 , а конечный – Н 2 . Тогда DH = Н 2 – Н 1 = DG + TDS, где DG – изменение созидательной активности населения, T - степень возбуждения граждан, DS - изменение разрушительной активности населения.

Если созидательная активность (потенциальная энергия) граждан высока, то есть DG<0, то она тратится на создание благополучного общества; в этом случае степень возбуждения Т не очень высока, поскольку люди заняты полезным делом, низка и разрушительная деятельность (митинги, излишняя политизированность общества и т.д.) иначе говоря, энтропия общества постоянна. В этом случае DH ≤ 0 (роста преступности практически нет).